
Chapter 6

GNY logic is not good enough yet. We analyze
some general problems of authentication logics.

We introduce completeness assumptions, add an
inference rule, enhance the protocol parser and

introduce maximum belief sets.

Extending GNY Logic

GNY logic is not powerful enough to analyze the protocols we want to analyze
in Chapter 9 of this thesis. Therefore, we will extend GNY logic. Before ex-
tending GNY logic, we need to address a few caveats of authentication logics
in general.

6.1 Why Authentication Logics Are So Tricky

Arguably the most difficult part of constructing an authentication logic is craft-
ing the list of inference rules. The inference rules should precisely express ‘all
relevant’ properties of cryptographic primitives such as cryptographic hash
functions, symmetric encryption and asymmetric encryption. The list of in-
ference rules often has omissions, and individual inference rules can have un-
stated assumptions, and sometimes even downright fatal flaws. The previous
chapter (Chapter 5) elaborated on such a flaw, found in BAN logic. Unstated
assumptions and omitted inference rules are sometimes two sides of the same
coin, but not necessarily so. An unstated assumption may still be a legitimate
assumption. An erroneously omitted inference rule is a Bad Thing: it means
that the logic does not detect a flaw which could have been detected if the rule
were not omitted.

6.1.1 Unstated Assumptions:
Length-Concealment and Non-Incrementality

We will give two examples of unstated assumptions with regard to inference
rules. We sketch the problem and offer directions of how to solve the problems
that result from the unstated assumptions.
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68 Chapter 6. Extending GNY Logic

The first example has to do with the constructs used to formalize encrypted
messages. Consider the following situation in a fictive university department:

In the department, all communication is done by placing sealed en-
velopes on the table in the coffee corner. On these envelopes the
names of the sender and the intended recipient are written, and
everybody obeys the rule to only open an envelope if he are the
intended recipient. Now everybody in the department knows that
Alice is writing her long-awaited PhD thesis, which presumably
contains shocking results. Everybody is dying to know whether
Alice has submitted her manuscript to her supervisor, Bob. As long
as the only envelopes from Alice to Bob on the table in the coffee
corner are a few thin, flimsy ones, everybody will be sure that Alice
has not yet submitted her manuscript. This will however change as
soon as a one-inch thick envelope from Alice to Bob appears on the
table.

Now, reread the description, but read ‘encrypted message’ where it says
‘sealed envelope’. Obviously, if one does not have the right decryption key to
an encrypted message, one cannot infer the contents of the message (i.e., look
inside the envelope). However, in general it is possible to infer the length of
an encrypted message from the encrypted message without knowing the de-
cryption key (i.e., one can look at the size and measure the weight of a sealed
envelope). In fact, length-concealing encryption schemes are a rarity indeed.
Within almost every authentication logic however, a length-concealing encryp-
tion scheme is assumed. We have not found any paper presenting an authen-
tication logic in which this assumption is explicitly stated. There is only one
way to infer that this assumption is actually made: there is no inference rule of
roughly the following form1:

P-LEN
P C {X}K ,
length(X, l)

P C length(X, l)

If a principal is told an encryption {X}K of for-
mula X , and the formula X has length l, then he
is considered to have also been told the length l
of the formula X .

Length-concealing encryption schemes are, from an information theory per-
spective, strictly stronger than length-revealing encryption schemes. There-
fore, if one analyzes a protocol in an authentication logic, and models a length-
revealing encryption scheme as length-concealing, one makes an unjustified
assumption. Care should be taken that such an unjustified assumption does
not invalidate the correctness proof that is obtained from the authentication
logic. An example of a protocol that can be wrongly proven secure using such
an assumption is derivable from the university situation described above.

1 This inference rule follows the notation of GNY logic, see Appendix B. Likewise, the recogniz-
ability (φ(·)) concept in GNY logic could be extended to facilitate recognition of the length of
formulae.
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For our second example on unstated assumptions, we return again to cryp-
tographic hash functions (cf. Chapter 3). Inference rule P4 of GNY logic2 states
that whoever possesses X , can obtain in a computationally feasible way H(X).
There is no inference rule of the following form:

H-INC
P 3 H(X, Y ),

P 3 (Y, Z)
P 3 H(X, Z)

If a principal possesses the hash value of the
concatenation of X and Y , and possesses Y and
Z, then he is capable of possessing the hash
value of the concatenation of X and Z.

Note that in H-INC, P may be ignorant of the actual contents of X .
If the cryptographic hash function denoted by H(·) is incremental as de-

scribed in Section 3.6, an inference rule like H-INC should be added to the
logic. Otherwise, the logic would systematically underestimate the inference
capabilities of the principals, which is undesirable. In fact, if this inference rule
would be added, the protocols described in Chapters 9 and 10 of this thesis
would be rendered worthless. In Chapters 9 and 10, we assume that the used
cryptographic hash function is indeed non-incremental.

Thus, one has to be careful and be explicit about whether a hash function,
modeled in an authentication logic, is considered to be incremental. It should
be noted that the authors of most authentication logics are not to blame for this
omitted assumption, as the concept of incremental cryptographic hash func-
tions has emerged years after most authentication logics were conceived.

6.1.2 Omitted Inference Rules: The Key to Incompleteness

It goes almost without saying that it is extremely difficult to create an authen-
tication logic from scratch that captures all possible cryptographic primitives
that might be used in a security protocol. To take an example: oblivious trans-
fer is not facilitated by any known authentication logic to date. While it is wise
to start small and keep authentication logics as simple as possible, incomplete
coverage of cryptographic primitives can have implications for the results ob-
tained by application of an authentication logic. The coverage of cryptographic
primitives by an authentication logic is determined by two aspects:

1. The formal language
It must be possible to denote in the formal language of the logic that a
certain cryptographic primitive has been applied to some message.

2. The inference rules
The ‘essence’ of a cryptographic primitive lies in what knowledge or pos-
sessions are required to perform specific operations. To correctly reflect a
primitive, the inference rules should precisely reflect what can and what
can not be done with the use of a certain primitive.

2 See Appendix B, page 185.
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Thus, incomplete coverage of primitives may be due to two types of omis-
sions. Either the the formal language is too restricted, or the list of inference
rules does not correctly reflect the workings of the primitives facilitated in the
language. The former type omission is not a large problem: if a primitive is
omitted in the language, a protocol using the primitive cannot be modeled us-
ing the authentication logic, and therefore cannot be falsely ‘proven correct’.
The latter type of omission poses a serious problem. In fact, it is this type
of omission that is partially to blame for the incompleteness of authentication
logics.

Omitted inference rules are no rarities in the field of authentication logics.
In fact, it is common to add inference rules when needed to prove a protocol
correct, and to ignore the inference rules not needed in the particular protocol
proof.

To illustrate how an omitted inference rule makes an authentication logic
incomplete, consider the following type of protocol. Let us assume we have
some protocol which uses asymmetric encryption, but requires the public keys
to be kept secret within a certain group of principals. (Actually, we do not
know whether such a protocol exists in practice, but there is no reason to render
such a protocol unviable.) Within this protocol, at a certain moment, a message
{X}−K is sent. This is the message X , cryptographically signed with private
key −K. The message X should remain secret within the group of principals
knowing the public key +K.

Does this protocol have a major problem? In fact, it does! If the signature
scheme is like almost any signature scheme used in common practice, it is pos-
sible to derive X from {X}−K without knowing or possessing the public key
+K.3 Thus, for the essentials of such a signature scheme to be reflected prop-
erly, an inference rule of the following form is required:4

T6′
P C {X}−K

P C X

If a principal is told a formula encrypted with
a private key (i.e., a signed formula) then he is
considered to have also been told the contents
of that formula.

Without an inference rule like T6′, an authentication logic fails to find the
huge gap in the above-mentioned protocol. If the protocol description were to
be adjusted such that it explicitly states that a signature scheme is used that
does not leak the message, this should be reflected in an assumption about the
inference rules. The assumption should be something like this:

There is no set of inference rules which allows a principal to derive
X from {X}−K .

This assumption is essentially a completeness assumption: it states that the
list of inference rules is complete with respect to some essential property of a
specific cryptographic primitive. In Chapter 9 we will use completeness as-
sumptions to prove certain principals cannot infer specific information.

3 This means that is is possible to read a message even if one does not recognize the signature.
4 This rule T6′ is of course a strengthened version of rule T6.
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6.2 Proofs of Knowledge and Ignorance

Proving that security protocols meet their specification generally involves
proving three properties of a protocol:

1. the participating principals learn what they should learn,

2. what the participating principals learn is indeed true, and

3. no principal learns facts he ought not to know.

Observe that properties 1 and 2 address mainly liveness, and that property
3 addresses safety.

Thus, a correctness proof requires both a proof of things that are learned,
and things that are not learned in course of a protocol run. Authentication
logics generally focus on the learning part, and less if at all on the not-learning
part. If an analysis of a protocol using an authentication logic does not expose
a flaw, this means that properties 1 and 2 are not violated, of course assuming
that the logic itself is ‘correct’.

If one wants to prove property 3, that principals can not infer specific facts,
one has to model the limitations of the inference capabilities of the agents, and
show that the limitations effectively obstruct principals from inferring certain
relevant facts (Cf. [ABV01]). To model the inference limitations of principals,
we need to model what inference rules are available to an agent. This is where
a nasty property of the authentication logics comes in: none of the authors of
these logics claim that the list of inference rules provided in the logic is indeed
complete in the sense that no more inference rules can be added. We have to
make completeness assumptions (as in Section 6.1.2) to be able to prove prop-
erty 3 of a protocol. We do not believe nor claim that completeness assumptions
are sufficient for proving property 3 of a protocol. This issue will be discussed
in Section 6.2.2.5

Typically, the (in)ability to draw specific conclusions plays a crucial role in
a security protocol: for example showing a message which can only be con-
structed with knowledge of the specific conclusion constitutes a proof of iden-
tity. This is best illustrated with cryptographic signatures. If some principal V
sees {X}−K , and knows−K is the private key of P , then V may believe P once
conveyed X . Why is this the case? Essentially, because no principal but P pos-
sesses−K. This begs the question: is there anything in the authentication logic
which prevents a malicious principal to create {X}−K out of thin air? The an-
swer is simple: no, there is nothing which prevents a principal to do this within
the authentication logic. Of course, in an actual ‘real world’ protocol run, it is
impossible to do this. So, the obstruction that one cannot construct messages
which are computationally hard to construct, should be incorporated into the
logic.6

5 Thus, completeness assumptions are necessary, but not necessarily sufficient.
6 Though this type of reasoning is not new in the domain of authentication logics, it has never

been incorporated into an authentication logic.
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While lacking a means to prove property 3, the meaning of a correctness
proof in an authentication logic is only limited. If it exposes a flaw in a proto-
col, the protocol will indeed be flawed. However, not finding any errors does
not guarantee that the protocol is correct. Therefore, proving a protocol cor-
rect using an authentication logic, only proves that the protocol has passed a
first test of some not-so-obvious flaws. However, we deem such a proof an
important step in defending correctness of protocols.

In the light of these considerations, we need to extend the authentication
logic we use (GNY) in such a way that

• what should be learned can in fact be learned7, and

• what should not be learned, can be proven not to be learned.

What can and cannot be learned should have causal effects in protocol runs.
We extend GNY logic in this way in the next two sections.

6.2.1 New Inference Rules for Proving Possession

In Chapters 8–10, we will present new methods for proving possession of infor-
mation based on cryptographic hash functions. In order to prove these meth-
ods correct, we have to model some properties of cryptographic hash functions
which have not yet been modeled in any authentication logic. This modeling
is done by adding the appropriate inference rule H2 to GNY logic.

The reasoning behind the added inference rule takes as its starting point
another inference rule (I4) which reflects a way in which possession can be
proven. Slowly we will manipulate this rule until we arrive at H2. Note that
we do not depart from an inference rule like H-BAN, because that rule is faulty
(see Chapter 5).

Since we are discussing inference rules which can be applied in protocols
in which one principal (the prover) proves something to another principal (the
verifier), we will use in the presented inference rules the names P and V to
denote the prover and the verifier (as opposed to using the names P and Q for
two arbitrary principals). Moreover, any malicious principal in our discussion
will be denoted with the name C (for Charlie). Messages are denoted X .

A well known method for proving possession of a certain message is to sign
the message one wants to prove possession of, and then to show this signed
message.8 Obviously this method cannot be used in a setting where the mes-
sage itself should be kept secret, because the message will be disclosed when
showing the signed message. Nevertheless it is interesting to look at the infer-
ence rule that captures the interpretation of signed messages, I4, repeated be-
low (from [GNY90]; note that the names of the principals have been changed,
therefore we name the rule I4′).

7 Of course, without making unjustifiable assumptions.
8 The signature is required because the communication channel does not reliably ‘say’ who has

sent a particular message. This is a result of using the malicious adversary model.
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I4′ V C {X}−K , V 3 +K, V |≡+K7→ P, V |≡ φ(X)
V |≡ P |∼ X, V |≡ P |∼ {X}−K

What the rule says is this: If V sees a signed message {X}−K , knows the public
key +K, knows the corresponding private key −K belongs to P , and recog-
nizes X to be a message, then V is entitled to believe that P once conveyed the
signed message {X}−K , and thus also once conveyed the message X itself.

Important to note are two silent assumptions of this inference rule:

1. For any X , no principal C will convey {X}−K where C 6= P . Thus, P ’s
private key −K is only known to P and P will never convey −K.9

2. P will, in a sense, be conservative in what he signs: P will only sign
intentionally and with consent.10 P will never sign unseen messages.

The reason for the second assumption is that a digital signature is non-
repudiatable.11. Making similar assumptions, we could introduce a new iden-
tity-related inference rule:

H1
V C ∗H(X, P ), V 3 (X, P )

V |≡ P |∼ (X, P ), V |≡ P |∼ H(X, P )

If V sees a message H(X, P ), which V did not send himself previously, and also
possesses (X, P ), then V is entitled to believe that P once conveyed (X, P ) and
H(X, P ).

The assumptions under which this rule is justified are these:

1. For any X , no principal C will convey H(X, P ) where C 6= P .

2. P will, in a sense, be conservative in the set of X’s for which he (P ) con-
veys H(X, P ). More specifically, P will only convey H(X, P ) for X’s of
which he (P ) wants to show other principals he possesses X .

These two assumptions tie together just like the two assumptions of rule
I4′: the first assumption states that only one principal is capable of sending
certain messages, and the second states that this principal will only do so with
informed consent.12

However, the first assumption of inference rule H1 is not justifiable. Re-
lying on rule H1, a malicious principal C, knowing P and any secret X , can

9 More precisely, we mean that no C will send {X}−K before receiving {X}−K : Thus, C could
perform replays of messages, but cannot generate messages signed with the key −K.

10 For example, P will not sign his own death penalty.
11 It is however important to distinguish the different intentions a signature may convey. A signa-

ture may convey, for example, a confirmation of a contract, or a receipt, or something completely
different. The signer should always assure that he consents the intention which he conveys with
his signature. In particular, a principal may sign an unseen message in a challenge-response
protocol as long as the context guarantees that the signature only conveys a receipt. This can
be assured by using a particular keyset for such signatures, or by including the intention in the
signed message itself.

12 Since I4′ is just a syntactic variation of I4, it of course also applies to I4.
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‘commit’ P to conveying the secret X by broadcasting H(X, P ). Assumption 1
of inference rule I4′ does not suffer from such a problem: to construct {X}−K ,
one has to possess −K.

To prevent malicious principals from creating havoc by sending H(X, P ),
we should require the message sent to be authenticated, i.e., that it is known
that P sent the message H(X, P ). Using sender identification, a verifier can
distinguish proofs of possession by malicious principals from proofs by in-
tended principals. When we incorporate sender identification, we can intro-
duce a more moderate rule like this one:

H2
V |≡ P |∼ ∗H(X, P ), V 3 (X, P )

V |≡ P |∼ (X, P )

If V believes P once conveyed the the message H(X, P ), which V did not send
himself previously, and if V also possesses (X, P ), then V is entitled to believe
that P once conveyed (X, P ). This effectively eliminates the first assumption
of rule H1.

Rule H2 is justified under the following assumptions:

1. For any X , no principal C will convey H(X, P ) where C 6= P .

2. P will, in a sense, be conservative in the set of X’s for which he conveys
H(X, P ) in an authenticated manner (that is, such that P can be identified
as the sender). More specifically, P will only convey H(X, P ) for X’s of
which he wants to show other principals that he possesses X .

Though these assumptions are not very different from the assumptions of
rule H1, the working of rule H2 is quite different. Firstly, a malicious princi-
pal C, knowing both X and P , cannot ‘commit’ P to conveying the secret X
by broadcasting H(X, P ). Moreover, if a malicious principal would broadcast
H(X, P ), and if P would receive it, sign it, and broadcast the signed message,
this would still not result in anyone being convinced that P actually possesses
X . Some may be convinced that P conveyed X , but conveying a message does
not imply possessing a message!

For any principal V to believe that P possesses X , based on rule H2, X
should be fresh. More precisely, X should contain a term that V believes to be
fresh, and then V could apply rule I6. Typically, V should construct a fresh
term F , and this term should be combined with X , yielding X ′ = (X, F ) and
then H(X ′, P ) should be computed. If P possesses X and receives F , then P
can construct a convincing proof of possession.

However, if P has an assistant C who possesses X , P might forward F to
C, and C might compute H(X ′, P ) and send this term to P . In turn, P could
sign this term and send it on to V , who will be convinced. Is this a problem?
Well, both yes and no. Yes, because strictly spoken it does not guarantee that
P actually possesses X . No, because it does guarantee that either P possesses
X or P has a rather cooperative assistant who does possess X and is willing
to perform computations on X on behalf of P . Assumption 1 above essentially
rules out that such an assistant exists.
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There is a slight technical issue with rule H2, which also applies to rule H1:
How can a principal P make sure that he is not sending some message M in
an authenticated manner (that is, such that P can be identified as the sender)
without actually knowing that he is sending H(X, P )? For example, P might
be required to sign a challenge M . P cannot verify whether this challenge M in
fact is equal to an H(X, P ) if he does not possess X . This problem can be solved
by adding something like a publicly known and recognizable speech act token to
the hash value that has to be signed: P would have to sign (“I know”,H(X, P ))
instead of just H(X, P ). The speech act token can always be recognized by P ,
and therefore P can prevent erroneously signing hash values. The inference
rule needs to be adjusted to reflect this, giving rule H3 shown below. In such
a way, P can make sure that he never accidentally signs a value that may be
interpreted using inference rule H3.

H3
V |≡ P |∼ (“I know”, ∗H(X, P )), V 3 (X, P )

V |≡ P |∼ (X, P )

This rule has the same assumption as H2, except that for H3, P can really make
sure the assumption is true, because P always knows it when he sends a signed
message may be used using inference rule H3. This rule requires that the lan-
guage of the GNY logic be extended with tokens. We decide not to do this (yet),
and use rule H2, knowing that we can trivially modify protocols and proofs to
reflect rule H3 instead of rule H2.

6.2.2 Proving That Principals Do Not Learn Too Much

Authentication logics focus on establishing whether the principals interacting
in a security protocol draw correct conclusions. However, for security proto-
cols, it is also crucial to prove that certain principals cannot draw some specific
conclusions. In this section, we will enhance GNY logic to extend its reasoning
capabilities about not learning. First, we make sure that not learning has causal
effects on protocol analysis, and secondly we enhance the logic to allow us to
precisely state in what circumstances it can be guaranteed that certain facts are
not learned.

Our proposal for incorporation is simple and effective. The protocol parser
which translates an idealized protocol into a number of step transitions (see
Section 4.3), should require that the sending party actually possesses (3) the
message it is supposed to send, before sending the message.13 Thus, any step
transition is of the following form:14

[Y, P 3 X] (P → Q : X) [Y, P 3 X, Q C X]

whereas in the original GNY logic, the step transition has only this form:

[Y ] (P → Q : X) [Y, Q C X]
13 This way of reasoning has also been used in our earlier work [TvdRO03].
14 For simplicity, we omit the ∗ (not-originated-here) sign which the GNY protocol parser in some

cases adds to the postcondition [GNY90, Section 5]. The not-originated-here sign is implicated.
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The effectiveness of this modified protocol parser lies in the fact that the
protocol parser introduces a precondition that should be derivable from earlier
statements. If it is impossible to derive the precondition P 3 X , then it is
impossible to perform the protocol step P → Q : X , and it is impossible to
create a legal annotation of a protocol.

To incorporate this precondition into our notion of a heavy annotation (see
Section 4.3), we require in a heavy annotation that every assertion of the form
‘is told (C)’ which is added after a protocol step is not only annotated with the
step number, but also with the assertion number which shows that the sender
actually possessed the message before sending it.15

This modified protocol parser and annotation requirements make sure that,
just as in the ‘real world’, there is a causal connection from not knowing X to
not being able to send X .16

Now that we have made sure that the inability to draw certain conclusions
has causal effects on the protocol analysis, let us focus on the inability to draw
certain conclusions. This should be proven for both active and passive attacks.
An active attack is an attack in which a malicious principal manipulates the
messages exchanged in a protocol in such a way that the honest participating
principals learn other things than intended by the protocol. A passive attack is
an attack in which the attacker learns something he should not learn, while
the only capabilities available to the attacker are eavesdropping and inference,
and notably not message interception and modification, as in the malicious
adversary model (Dolev-Yao threat model). The literature about authentica-
tion logics generally addresses the case of active attacks (like in the Needham-
Schroeder Public-Key protocol (NSPK) [Low96]), but not the case of passive
attacks.

We demonstrate an approach to proving that principals cannot learn spe-
cific facts in the course of a protocol run. We believe that this is a significant
contribution to establishing for concrete protocols a proof of property 3 as men-
tioned in Section 6.2, page 71.

Normally, when proving a protocol using an authentication logic, assump-
tions about the participating principals are stated. We introduce an extra prin-
cipal and show that this principal cannot infer what should be kept secret. This
new principal E is Eve the evil eavesdropper. We make no assumptions on
what role Eve takes in the protocol: Eve may either be one of the participants
or an external observer. Just as with any other principal, we list assumptions
about what Eve possesses and believes at the beginning of the protocol. The
meaning of the assumptions is somewhat different, however. When we state

15 If we return to the heavy annotation of the example of the signing parrot protocol, shown in
Figure 4.4 on page 53, line 6 should carry as justification ‘[1](4)’ instead of just ‘[1]’. Line 7
cannot be justified right away, but from line 6, using inference rules P1 and P8, B 3 {N}−K

can be inferred. The line on which AC∗{N}−K is inserted, should carry as justification ‘[2](x)’,
where x is the line number on which B 3 {N}−K is inferred.

16 Note that this modified protocol parser does not rule out attacks in which forwarding of mes-
sages plays a role: to forward a message, the intruder still has to observe the message.
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an assumption for a ‘normal’ principal participating in the protocol, this is in
some sense a weakness of the protocol: it has to be met in order for the proto-
col to be correct. When we state an assumption about Eve, this is a strength of
the protocol: even if Eve knows or possesses this a priori, the protocol is still
correct in the sense that Eve cannot infer the secret. Thus, we establish the max-
imum amount of a priori beliefs and possessions Eve may have under which
it is still impossible for Eve to infer the secret facts, a maximum belief set.17 Just
as with ‘normal’ authentication logic proofs, the list of assumptions allows to
reason about subtleties concerning the quality and applicability of a protocol.

To sum up, we model two properties of a passive attacker, namely

1. its beliefs and possessions (by means of a maximum belief set), and

2. its inference capabilities (by means of completeness assumptions, see Sec-
tion 6.1.2).

Using these beliefs, possessions and inference capabilities, we can compute
what a passive attacker can learn from observing a protocol run. The things
that should be kept secret should not be learnable for the passive attacker.

6.3 Conclusion

Authentication logics are powerful instruments that should be created and
handled with care. Two types of mistakes that are easily made are (1) mak-
ing implicit (unstated) assumptions, and (2) omitting inference rules. When all
inference rules modeling a particular cryptographic primitive are added to an
authentication logic, one can guarantee a limited kind of completeness of an
authentication logic.

The important elements of our extension to GNY logic are the following:

Heavy annotations which make sure verification of a protocol analysis is
structured and simple. The general structure of heavy protocol anno-
tations that has been explained in Section 4.3 (page 53) is extended in
Section 6.2.2 (page 76).

Completeness assumptions which allows one to state that an authentication
logic models all essential properties of a cryptographic primitive. Com-
pleteness assumptions are introduced in Section 6.1.2 (page 70).

Inference rule H2 which captures an important property of cryptographic
hash functions that had not yet been incorporated into any authentication
logic. This inference rule is explained and introduced in Section 6.2.1.

A modified protocol parser which requires principals to possess a message
before they can send it. This is needed for proving that not learning spe-
cific facts has causal effects on protocol evolution. This modified protocol
parser is introduced in Section 6.2.2.

17 This maximum belief set is not necessarily unique.
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Maximum belief sets which allow one to reason about passive attackers and
what they can and cannot learn in the course of a protocol run, depending
on their a priori knowledge and possessions. Maximum belief sets are
explained in Section 6.2.2.

Later on in this thesis, in Chapter 9, we will use our extended version of
GNY logic to analyze our protocols.




