
Chapter 4

Authentication logics (such as BAN and GNY)
offer a way to reason about the knowledge of

principals in a security protocol. It is explained
how such logics work and what their caveats are.

Authentication Logics

Formal analysis of security protocols requires one to reason about the knowl-
edge of the participants (principals) in the protocol. Critical for a security
protocol is that it should not only guarantee that certain information is com-
municated, but also that certain other information is not communicated. For
example, external observers should typically not be able to infer session keys
which are exchanged in a security protocol.

BAN logic [BAN89b, BAN89a]1, introduced by Burrows, Abadi and Need-
ham, is an epistemic logic2 crafted for analyzing security protocols. It mod-
els at an abstract level the knowledge of the principals in a protocol. The
principals are supposed to have only polynomially many computational re-
sources. It was the first logic of its kind, and has had a tremendous influ-
ence on protocol analysis: it has helped revealing weaknesses in known pro-
tocols, and many logics are based on it, among others GNY logic. We refer
to BAN logic and all the variations of it as authentication logics. This is not
to say that there has been no criticism of BAN logic. For one thing, a full se-
mantics is lacking, and many attempts have been made to fix this problem
[AT91, GNY90, KW94, WK96, vO93, SvO94, SvO96, Dek00]. Moreover, the
logic fails to detect some very obvious protocol flaws [Nes90].

The general consensus about BAN-descendant logics appears to be that
these logics are computationally sound (detected protocol flaws are indeed
flaws), but certainly not computationally complete (they may fail to detect cer-
tain protocol flaws). Recent work includes attempts to bridge the gap between
the formal (i.e., BAN-descendant) approach and the computational approach
to security logics [AR02], and attempts to obtain completeness results for BAN-
descendant logics in a kind of Kripke-style semantics [CD05a, CD05b]. In the

1 See Appendix A.1 for a taxonomy of the papers presenting the BAN logic.
2 For a thorough treatment of epistemic logic, consult [FHMV95, MvdH95].

47

48 Chapter 4. Authentication Logics

Multi-Agent Systems world, BAN logic has been widely used (see for example,
[AvdHdV01]).

Authentication logics play an important role in this thesis. In Chapter 5, we
will prove that BAN logic is not ‘sound’, due to an inference rule that tries to
model cryptographic hash functions. In Chapter 6, we will extend another au-
thentication logic, GNY logic, in such a way that our protocols can be analyzed
using GNY logic, which we do in Chapter 9. In the current chapter, we will
explain the basics of authentication logics.3 Where we write formulae, this will
be formulae in GNY logic (which is summarized in Appendix B).

4.1 The Goals of an Authentication Logic

The main idea of authentication logics is that we model for each principal,
what he knows, and what he can derive. What principals know includes what
principals know about the knowledge of other principals: authentication logics
are a special kind of epistemic logic. The knowledge of principals is modeled by
explicitly stating what inference capabilities principals have, what principals
know a priori, and what principals observe during a protocol run. The total
knowledge of a specific principal is the logical closure of all capable inferences
over the knowledge he has so far: A principal may know X a priori, infer from
this Y , and if Z is inferrable from Y , the agent by definition also knows Z (and
so on).

In most authentication logics, the malicious adversary model is used, which
means that it is assumed that an adversary can overhear and intercept every
message sent, and that an attacker can send any message he can synthesize.
Message synthesis of the attacker is however limited to what is cryptograph-
ically feasible, i.e., the attacker has only polynomial computing power and
cannot perform brute-force analysis to find secret keys [DY83]. (See also Sec-
tion 2.6.)

Thus, principals are logically omniscient in the sense that they may apply
some given inference rules unboundedly often. However, principals are not
‘mathematically omniscient’, i.e., they are not capable of all valid inferences.4

Proving that security protocols meet their specification generally involves
proving three properties of a protocol:

1. the participating principals learn what they should learn,

2. what the participating principals learn is indeed true, and

3. no principal learns facts he ought not to know.

Thus, a correctness proof requires both a proof of things that are learned,
and things that are not learned in course of a protocol run. Authentication

3 For alternative introductions, consult [GSG99] and [SC01].
4 In particular, principals cannot perform brute-force attacks on cryptographic primitives.

4.2. The Taxonomy of Any Authentication Logic 49

assumptions Alice knows Bob’s public key, and Bob knows his own secret key.

the protocol itself Alice chooses a random number and sends it to Bob. Bob
signs this number and sends it back to Alice.

claims After Alice receives Bob’s message, she knows Bob received and read
her message containing the random number.

FIGURE 4.1: The signing parrot protocol, plain description

logics generally focus on the learning part, and less if at all on the not-learning
part. If an analysis of a protocol using an authentication logic does not expose
a flaw, this means that properties 1 and 2 are not violated, of course assuming
that the logic itself is ‘correct’. In Chapter 6, we will extend GNY in such a way
that property 3 is also addressed.

The specification of a protocol consists of the the following information:

Assumptions A description of the situation before the protocol is executed:
who are the players involved (the principals), what is the knowledge of
the principals, the reasoning powers of the principals, and the knowledge
and reasoning powers of those who do not participate in the protocol.

The Protocol Itself A description of the messages that are exchanged in the
protocol: how they are constructed, by whom, and when they are sent.

Claims A description of what the protocol supposedly provides: in what way
the knowledge of the principals has changed since the beginning of the
protocol, and in what way the knowledge of principals, including exter-
nal observers, has not changed since the beginning of the protocol.

For example, consider the protocol shown in Figure 4.15. We will use this
protocol in the rest of this chapter in our examples.

4.2 The Taxonomy of Any Authentication Logic

In authentication logics, messages are not modeled as bit strings (as they are
in the ‘real world’), but as formulae. The principals in a protocol send one an-
other formulae, and privately possess formulae. When a principal possesses a
formula this just means he has it stored in his memory. Principals can construct
(synthesize) new formulae by applying certain given methods. For example,
one such method is symmetric encryption: if a principal possesses a message
M and a key K, he can construct the message {M}K , the symmetric encryption
of M under K.

5 This trivial protocol does not appear to have a name yet. For easier discussion, we will baptize
it the signing parrot protocol. This protocol falls in the category often referred to as “Don’t try this
at home!” Bob’s behavior of signing any message he sees, is very unwise.

What happens in the protocol however, does have a name. In strand-space terminology, it is
called incomping authentication [Gut01, Gut02].

50 Chapter 4. Authentication Logics

Similarly, principals can analyze (deconstruct) messages: if a player pos-
sesses {M}K and K, then he can decrypt {M}K and infer M , so he can add
M to his ‘possessions’. If on the other hand a principal possesses {M}K but
not the decryption key K, it is (of course) not possible to infer M . In this way,
certain parts of the communication may be hidden from some principals or
external observers.

An authentication logic essentially consists of (at least) four parts:

1. A Formal Language that describes what formulae exist (i.e., what kind
of messages can be exchanged). Moreover, the language describes what
kinds of assertions can be made. Assertions typically relate formulae
to principals. The formal language of GNY logic is summarized in Ap-
pendix B.1.

The expressive power of the language directly influences the class of mes-
sages that can be expressed in the logic. For example, if there is no nota-
tion accommodated for asymmetric encryption, the logic cannot reason
about it. A similar point also holds for statements: if for example the
language does not distinguish between possessing a formula and believ-
ing the formula, one has to assume a principal believes all formulae he
possesses.

2. A Protocol Idealization Method that describes how to translate a pro-
tocol description into the formal language of the logic. This results in
a protocol description in the form of an ordered list of send statements
S1, · · · , Sn, each Si in the form P → Q : X (read: ‘P sends Q message X’)
where P and Q are principals (P 6= Q) and X is a formula in the formal
language of the logic.

A protocol idealization method typically omits implementation details
and tries to focus on the beliefs that are to be conveyed in the message.
Protocol idealization is a manual task performed by humans.

3. A Protocol Parser which is an algorithm that translates an idealized pro-
tocol into an ordered list of step transitions. This list is the basis for further
analysis of the protocol.

Most protocol parsers are very trivial, but sometimes the parser does
something that could be considered a kind of advanced annotation of
the protocol.6

4. A List of Inference Rules or Logical Postulates which defines what a
principal can do to construct and analyze formulae. In the following
generic presentation of an inference rule with name N , X1, X2, · · ·Xn,
Y1, Y2, · · ·Ym represent statements in the formal language of the logic.

N
X1, X2, · · ·Xn

Y1, Y2, · · ·Ym

6 Our notion of a protocol parser is a generalization of the protocol parser notion described
in [GNY90].

4.2. The Taxonomy of Any Authentication Logic 51

assumptions A 3 +K, A |≡+K7→ B, B 3 −K, A 3 N, A |≡](N)

the protocol itself 1. A → B : N
2. B → A : {N}−K

claims A |≡ B 3 N

FIGURE 4.2: GNY idealization of the signing parrot protocol. Alice and Bob
are denoted A and B. Bob’s public key is +K and his private key is −K. The
randomly chosen number is denoted N . For a summary of the formal language
of GNY logic which is used here, consult Appendix B

If X1, X2, · · ·Xn all hold, then Y1 and Y2 up to Ym may all be inferred.

The inference rules of GNY logic are summarized in Appendix B.2.

The list of inference rules is typically hand-crafted, small, and often fully
given. The set of inference rules should be constructed in such a way
that all notions attributed to elements of the language are expressed in
the inference rules. For example, if it is possible to formulate a statement
essentially saying ‘principal P knows X and Y ’, then there should be
inference rules accommodating the inference of ‘principal P knows X’
and ‘principal P knows Y ’ from the original sentence.

To illustrate what the formal language and an idealized protocol look like,
the GNY idealization of the signing parrot protocol is shown in Figure 4.2.
Appendix B lists the formal language of GNY logic that is used in the figure.

The formal language of authentication logics often has a rather limited ex-
pressive power. In particular, explicit negations and disjunctions are oddities
(with the notable exception of SVO logic [SvO94]). Implicit negations can how-
ever be found easily: most formal languages have a construct denoting that
some cryptographic key K is only known to two (explicitly named) principals.
In BAN and GNY logic, which will be explained later, this is the construct
P

K↔ Q. This of course implies that other principals do not know the key K.
However, this very same construct also suggests that none of the two named
principals would disclose the key K, and it remains the question whether this
is realistic. And while disjunctions are not facilitated by the formal language,
there are often inference rules which resemble disjunction elimination7.

Of course, with poor support of disjunctions and negations, these logics
can hardly if at all model protocols which have conditional branching: where
whether some protocol steps are executed depends on the outcome of previous
protocol steps. If one wants to analyze such a protocol using an authentication
logic, one has to do this ‘outside of the logic’, that is: rely on natural language
and while doing so, remain precise and concentrated.

7 For an example of such an inference rule, look at rule I3 of the GNY logic, shown in Appendix B
on page 186. The ∗ sign in the first condition denotes that P did not send the message, and

P
S↔ Q denotes that only P and Q know S. From this it is inferred that Q sent the message.

52 Chapter 4. Authentication Logics

[A 3 +K, A |≡+K7→ B, B 3 −K, A 3 N, A |≡](N)]
(A → B : N)

[B C ∗N]
(B → A : {N}−K)

[A C ∗{N}−K , A C {N}−K , A 3 {N}−K ,

A 3 H(N), A |≡ φ(N), A |≡ B |∼ N, A |≡ B 3 N]

FIGURE 4.3: GNY annotation (‘correctness proof’) of the signing parrot pro-
tocol. The assertions in the last postcondition are obtained by application of
inference rules T1, P1, P4, R6, I4 and I6 (in that order). The very last assertion
is equal to the claim of the protocol.

4.3 Using an Authentication Logic

When one analyzes a protocol using an authentication logic, one searches for a
legal annotation of the protocol. A legal annotation is an annotation with some
special properties. First, let us explain what an annotation is. An annotation
of a protocol S1, · · · , Sn is roughly something like a transcription in Hoare
logic [Hoa69]:

[assumptions] S1 [assertion 1] · · · [assertion n− 1] Sn [conclusions]

An assertion is a (comma-separated) list of assertions in the formal lan-
guage, interpreted as a conjunction. Obviously, the assumptions and the con-
clusions are a special type of assertion.

The protocol parser provides a list of step transitions. A step transition has
the form

[precondition] (P → Q : X) [postcondition]

For many logics, including BAN and GNY, the precondition is of the form
Y , and the postcondition is of the form Y, Q C X , which essentially means
that whatever was true before the protocol step remains true afterward, and
principal Q observes what he is told, namely X . Moreover, the assertion QCX
may be inserted directly after the protocol step. The protocol step itself is the
justification for this assumption8.

Note that the protocol parser does not enforce that the sending party is ac-
tually capable of sending the message (i.e., P 3 X is not a formal precondition).
In particular, the protocol assumption B 3 −K remains unused in the analysis,

8 The GNY protocol parser sometimes inserts the not-originated-here sign (∗) into the inserted
assertion. The rules for adding this sign are somewhat complicated, and will for simplicity not
be explained in this thesis. These rules can be found in [GNY90, Section 5].

The not-originated-here sign (∗) rougly means, that the principal who receives a message
∗X , has not previously sent a message X .

4.3. Using an Authentication Logic 53

1 A 3 +K (B → A : {N}−K)
2 A |≡+K7→ B 7 A C ∗{N}−K [2]
3 B 3 −K 8 A C {N}−K T1(7)
4 A 3 N 9 A 3 {N}−K P1(8)
5 A |≡](N) 10 A 3 H(N) P4(4)

(A → B : N) 11 A |≡ φ(N) R6(10)
6 B C ∗N [1] 12 A |≡ B |∼ N I4(8, 1, 2, 11)

13 A |≡ B 3 N I6(12, 5)

FIGURE 4.4: Heavy GNY annotation of the signing parrot protocol. After each
assertion which is not an assumption, a justification is placed. This justifica-
tion is either the result of a communication step inserted by the protocol parser,
denoted with the protocol step between [square brackets], or the name of the
inference rule applied, together with the statement numbers of its satisfied pre-
conditions.

while it is neccessary since otherwise B cannot send the message {N}−K . This
issue is addressed further in Section 6.2.2.

To create a legal annotation of a protocol is to weld all step transitions of a
protocol together such that:

• the precondition of the first step contains only the protocol assumptions;

• the postcondition of the last protocol step contains the protocol claims;

• except for the protocol assumptions and assertions added by the protocol
parser, any assertion is derivable (by means of the inference rules) from
its prefix9.

We will use the final requirement, derivability, in a rather strict sense: every
statement is obtainable from its prefix by application of at most one inference
rule. This does not narrow the class of protocols for which legal annotations
can be found, while at the same time it makes it easy to verify whether an
annotation is legal. Moreover, we allow repetitions of assertions to be omitted
for ease of reading. An example of a legal annotation of a protocol is shown in
Figure 4.3.

This type of annotation can be difficult to read and interpret, and therefore
in this thesis, we will be a bit more explicit. We will write every statement
on an individual line, together with a line number and the applied inference
rules for easy reference. An example of such a ‘heavy annotation’ is shown in
Figure 4.4.

It should be noted that this type of logic is monotonic within a single proto-
col run: all assertions are stable, i.e., once true they remain true (for the time of
the protocol run). To prove that a protocol is correct with repsect to a particular
claim to give a (constructive) proof of the protocol claim by means of a (heavy)
annotation.

9 i.e., the protocol annotation before (‘left of’) the statement in question.

54 Chapter 4. Authentication Logics

4.4 The BAN Logic Debate

Authentication logics provide a very intuitive means of analyzing security pro-
tocols. Whether the approach is also accurate has been subject of a very ex-
tended debate. The main criticisms of BAN logic regard the following proper-
ties of the logic:

1. the semantics,

2. the notion of belief,

3. the protocol idealization method,

4. the honesty assumption, and

5. the incompleteness.

Appendix A.2 discusses these criticisms in more detail. All existing criti-
cisms of authentication logics might suggest that the approach is rather worth-
less, but on proper inspection the host of critiques deserves another interpre-
tation: The way of reasoning in authentication logics is highly valuable, and
that is why so much effort has been taken to improve the original BAN logic. In
this thesis, the constructive contribution to authentication logics can be found
in Chapter 6.

Our opinion on authentication logics is that the general approach is simply
wonderful, while the operationalization of the approach is rather troublesome.
In particular, authentication logics in general should not be blamed for prob-
lems with early, individual instances of authentication logics, such as BAN logic.
The methodology is simple, intuitive and powerful. Therefore, we feel authen-
tication logics deserve to be one of the basic tools for protocol analysis (next to
other methodologies such as strand spaces and the computational approach).

We are not blind to the shortcomings of BAN logic and its descendants. In
Chapter 5, we even prove that BAN logic is not ‘sound’, and Section 6.1 is not
particularly praising, either.

4.5 Conclusion

In this chapter, we have briefly explained how an authentication logic works.
The role of the formal language, the inference rules, the protocol parser, asser-
tions, annotations and legal annotations have been explained. We have intro-
duced the concept of a heavy annotation, which is a legal annotation that is easy
to verify.

In the next chapter (Chapter 5), we will prove that BAN logic is not ‘sound’,
and in Chapter 6 we will extend GNY logic in such a way that our protocols
can be analyzed in Chapter 9.

For further reading on authentication logics, consult [SC01].

