
Part II

Tools

27





Chapter 3

There are many kinds of cryptographic hash
functions and we present many definitions. We
give a survey of design paradigms and common

applications of cryptographic hash functions. We
introduce the concept of non-incrementality,

which is necessary when we want to use
cryptographic hash functions in proofs of

knowledge.

Cryptographic Hash
Functions

Typically, cryptography is about encoding and decoding. One can take a mes-
sage and encode it in such a way that only specific people can reconstruct (de-
code) the original message from the encoded message (because they have the
right secret key). Thus, though messages are mangled in such a way that the
ciphertext looks like random noise, it is possible to reconstruct the original
message from the ciphertext. This chapter is not about this type of cryptogra-
phy. This chapter is about cryptographic functions (primitives) which have no
inverse: it is impossible (or at least hard) to reconstruct the original message
from the ciphertext. Such functions are called cryptographic hash functions1 On
first sight it may seem that this type of functions has no sensible application,
but this is not the case. In this chapter, we will show a number of well-known
applications. Later on in this thesis, we will show a whole new type of appli-
cation of this type of functions. In Section 3.6 we will elaborate on these new
applications, which will be shown in greater detail later on in Chapters 8–10 of
this thesis.

In this chapter, many hash function-related concepts necessary for under-
standing this thesis will be explained. In cases where multiple names for the
same concept exist, a footnote at the first use of the concept will list equiva-
lent names of the concept. A more detailed taxonomy of cryptographic hash
functions can be found in [Pre93, Pre98]. A highly valuable reflection on the
definition of cryptographic hash functions can be found in [And93].

Cryptographic hash functions can be regarded as a special case of hash
functions. Therefore, Section 3.1 will explain what a ‘normal’ hash function
actually is, and Section 3.2 will elaborate on what distinguishes cryptographic

1 Sometimes cryptographic hash functions are called one-way functions [DH76].

29



30 Chapter 3. Cryptographic Hash Functions

hash functions from normal hash functions. In Section 3.3 we will explain the
Random Oracle Model, which can safely be regarded the theoretical ideal of a
cryptographic hash function. In Section 3.4 two approaches to construct cryp-
tographic hash functions will be described: the Merkle-Damgård paradigm, and
the randomize-then-combine paradigm. In Section 3.5 we will give brief survey of
applications of cryptographic hash functions.

The concept of cryptographic hash functions as they are generally used is
not strong enough for our purposes in this thesis. Therefore, we will explain
and define the concept of non-incrementality in Section 3.6. In the final section
of this chapter, we will briefly summarize what properties of a cryptographic
hash function are required for the new applications described later on in this
thesis (in Chapters 8–10),

3.1 Normal Hash Functions

In this section, we will give a definition of hash functions, elaborate on this
definition, and explain what hash functions are typically used for.

Definition 3.1. A function is a hash function if it

1. takes its input from a large (possibly infinite) domain,2

2. has a bounded range,

3. is designed to minimize collisions,

4. is designed to be fast to compute, and

5. is deterministic.

The input to a hash function is often called a message or pre-image. The
output of a hash function is often called the hash value, or just simply the hash.

If two different pre-images M1 6= M2 have the same hash value (H(M1) =
H(M2)), we have a collision. Because of the birthday paradox3, one can be sure
that in practical situations collisions will occur.

A few observations about the list of properties of a hash function should be
made here. Properties 1 and 2 imply that a hash function is in practical terms
always many-to-one. Property 3 implies in practical terms that the output of
a hash function should depend on the complete input of the hash function.

2 In theory, a hash function is a function H : {0, 1}∗ → {0, 1}k , but in practice the input domain is
bounded by a very high number, for example SHA-512 (H : {0, 1}2128 → {0, 1}512) can handle
messages with a length of 2128 bits [Nat02]. To give some perspective, there are not even 2128

bits stored together on all hard disks worldwide.
3 The birthday paradox states that if there are 23 or more people in a room, the chance that two of

them have the same birthday is more than 50%. This number of 23 is much lower than what one
might expect from intuition. It stresses that the chances of a “collision” are often underestimated
by humans.



3.1. Normal Hash Functions 31

Marie Antoinette - Hash function - C229HH
HHj

Marie C. Brehm - Hash function - 3BF6
@

@
@

@RMarie Claire - Hash function - 8073����*

Marie Curie - Hash function - 04DE -

FIGURE 3.1: A ‘normal’ hash function in action. To the left is a list of (highly
non-uniform) names. All of these names are each led through a hash function,
resulting in a list of ‘more-or-less uniform’ hash values. To the right is a data
structure with allocated slots (black) and unallocated slots (white). The hash
function minimizes the chance that two highly similar names should be stored
in the same slot.

Property 4 simply follows from the general goal in computer science to pro-
duce efficient computer programs. Later on in this chapter, however, we will
see applications where “fast to compute” should apply only to specific uses of
hash functions, and not to others, such as, for example, the inverse of a hash
function. Property 5 is so obvious for computer scientists that it is often taken
for granted, and therefore it is often not considered as a part of the definition.
However, since many cryptographic primitives, such as encryption, are often
non-deterministic, we deem it important to stress that hash functions are always
and by definition deterministic.

Definition 3.1 does not mention a typical application, but hash functions are
normally used to optimize data structures, and are often not ‘visible’ from the
outside of the data structure. Range sizes of such hash functions are typically
only a few orders of magnitude larger than the number of elements stored in
the data structure (say a few thousand, or maybe a few million at the most).

In data structures it is often needed to store data values together with some
identification (an index) in such a way, that it is efficient to locate the correspond-
ing data value if given an identification. For example, a teacher would like to
find the grades of a student quickly, if he is given a student name. To pro-
vide this functionality, one needs a look-up-table (LUT), a data structure that
maps indexes to the corresponding data. A LUT has to be designed with a bal-
ance between storage requirements and search time. The naive solution is to
reserve a memory slot for each possible index. This solution wastes an incred-
ible amount of storage space, since usually the number of stored data values
is only a tiny fraction of the number of possible indexes. Indeed, the domain
of indexes may be infinite. A less naive solution could be to reserve a single
slot for a number of large chunks of possible indexes, and hope that it will not
happen that the corresponding slot will be needed more than once at the same
time.

Therefore, one has to be smart in the way the full domain of possible in-



32 Chapter 3. Cryptographic Hash Functions

dexes is divided over the allocated slots. This is where a hash function can be
used to optimize data structures. A hash function can be used to determine,
given an index, in which allocated slot the corresponding data value should be
stored. Figure 3.1 shows an example of how a hash function attributes hash
values to indexes and how this determines slot usage.

In most applications, the actual indexes have a highly non-uniform distri-
bution over the domain of possible indexes. If no precautions are taken, many
indexes will be projected onto a small set of hash values, which results in a
lot of collisions and a lot of unused slots. Thus, a hash function should be de-
signed in such a way that even for highly non-uniform input, its output should
be more or less uniform.

Moreover, it should be noted that so far, there is nothing secretive about
hash functions. Given a specific hash function, it will generally be easy to
construct different pre-images in such a way that they will lead to a collision
in a given hash function. Also, it may be easy to infer some properties of the
pre-image from the output of the hash function.

3.2 Special Properties

From a cryptography point of view, hash functions are interesting if it would
be possible to strengthen some of their properties to the extreme. Hash func-
tions need to be strengthened in such a way that, for example, for any set of
messages, (1) the set of hash values is indistinguishable from a uniform distri-
bution, and that (2) collisions are not just unlikely, but actually hard to find.
If this could be achieved while the hash function is still cheap to compute, it
would open up a whole lot of applications, most of which will be described in
section 3.5.

The special properties which distinguish cryptographic hash functions from
‘normal’ hash functions are all related to computational complexity. It defi-
nitely goes beyond the scope of this chapter, even this thesis, to give full formal
definitions of the hardness properties introduced later on in this section. There
are many different ways to define them, and the technicalities involved in these
definitions are not relevant for our purposes. Nevertheless, we feel that some
clear indication of what we mean by easy and hard should be provided.

The parameters which play a role in the complexity figures of cryptographic
hash functions are l, the length in bits of the pre-image of the hash function, and
k, the length in bits of the output of the hash function. For a given hash func-
tion, k is always given, and l (obviously) depends on the pre-image with which
one feeds the hash function. For a hash function to be easy to compute, or com-
putationally feasible, means that the number of operations is at most polynomial
in l.4 A computation is considered hard to compute, or computationally infeasible
if the number of required operations is superpolynomial in terms of the input.
Specifically, we consider a hash function hard to invert if, given a hash value h,

4 In practical cases, it is common that the number of operations is at most linear in l.



3.2. Special Properties 33

it requires O(2k) operations to find a (second) pre-image. Of course, an attack
that requires less than O(2k) may in practical terms still be infeasible.

It depends on the application how far, and in what way, the properties of a
hash function must be strengthened. There is no such thing as an all-purpose
cryptographic hash function, because requirements of one application may be
incompatible with requirements of other applications. To choose a type of
cryptographic hash function is therefore to select properties from a menu of
possible options. Some options are mutually exclusive, some options can be
combined, and some options imply others.

Deciding what properties a cryptographic hash function should have is a
very complex task, and in [And93] some stunning examples of overlooked,
but required properties in certain applications are shown. Terminology is par-
tially to blame, as the operationalization of a concept is often given the name of
the concept itself, though the operationalization is often far from perfect. The
most blatant example of this is that a hash function that is called ‘collision-free’
actually has infinitely many collisions. It is not advisable to literally interpret
the linguistic meaning of the words which make up the name of a concept.

For a hash function, one has to choose its keyedness, its freedom, its key depen-
dency level and its incrementality. The full menu of items and options to choose
from is shown in Figure 3.2.

Keyedness The first choice on the menu is whether or not the cryptographic
hash function should be keyed. A keyed cryptographic hash function is
often called a Message Authentication Code, or simply MAC.5 A MAC
takes two inputs: a key and the pre-image. In the context of MACs, the
key is a piece of information which makes computing the function ac-
tually feasible: without the key, not only the inverse is hard, but also
the ‘forward’ direction of computation is impossible. Any application of
a MAC should include a specification of which principals should know
the key, and which principals should not. Otherwise, if the key were
to be publicly known, the keyed cryptographic hash function would re-
duce to a non-keyed cryptographic hash function. (In fact, in many cir-
cumstances it reduces to even less than a non-keyed cryptographic hash
function, which will be explained later on in this section.) If it is unspeci-
fied whether a cryptographic hash function is keyed or not, a non-keyed
cryptographic hash function is assumed.

Freedom The second choice on the menu is about how obscure the relation
between the input and the output should be. In the definitions to come,
the parts between square brackets [] give the definitions for MACs. The
bitwise exclusive or is written as ⊕. In these definitions, computationally
infeasible means that there exists no polynomial-time function to perform
the task mentioned, given the usual assumptions about the complexity
hierarchy.

5 The opposite, a cryptographic hash function that is not keyed, is often called a Manipulation
Detection Code, or simply MDC.



34 Chapter 3. Cryptographic Hash Functions

One-Way A hash function H(M) [MAC (K, M)] is one-way6 if, for a giv-
en hash value h, it is computationally infeasible to construct a mes-
sage M [and key K] in such a way that H(M) = h [MAC (K, M) =
h].

Weakly Collision-Free A hash function H(M) [MAC (K, M)] is weakly
collision-free7 if, for a given message M1, it is computationally infea-
sible to find a message M2 such that M1 6= M2 and H(M1) = H(M2)
[MAC (K, M1) = MAC (K, M2)].

Strongly Collision-Free A hash function H(M) [MAC (K, M)] is strong-
ly collision-free8 if it is computationally infeasible to find any two
messages M1 and M2 such that M1 6= M2 and H(M1) = H(M2)
[MAC (K, M1) = MAC (K, M2)].

Correlation-Free A hash function H(M) [MAC (K, M)] is correlation-
free if it is computationally infeasible to find any two messages
M1 and M2 such that M1 6= M2 and the Hamming weight9 of
H(M1) ⊕ H(M2) [MAC (K, M1) ⊕ MAC (K, M2)] is less than what
one would expect if one were to compute H(M1) ⊕ H(M ′)
[MAC (K, M1) ⊕ MAC (K, M ′)] for a lot of randomly chosen M ′

[Oka93, And93]10.

Correlation freedom means in practical terms that not only collisions are
very unlikely and hard to find, but also that near misses11 are unlikely
and hard to find. Thus, correlation freedom is a strictly stronger prop-
erty than strong collision freedom. Moreover, strong collision freedom is
a strictly stronger property than weak collision freedom, and weak colli-
sion freedom is strictly stronger than one-wayness. This is summarized
in Figure 3.2.

Key Dependency For MACs, there are a few more relevant properties, which
a MAC is generally assumed to satisfy:

Key-Dependent A MAC MAC (K, M) is key-dependent if, given a pre-
image M , it is hard to compute MAC (K, M) (that is, without K)12.

Chosen Text Attack-Resistant A MAC MAC (K, M) is resistant against
a chosen text attack, if given any number of freely chosen pairs
{M ′,MAC (K, M ′)}, it is still hard to compute MAC (K, M) for any
M 6= M ′.

6 One-way is also called first pre-image resistant.
7 Weakly collision-free is also called second pre-image resistant.
8 Strongly collision-free is also called collision-resistant.
9 The Hamming weight of a binary string is the number of nonzero bits is the particular string.

10 Of course, the Hamming weight of the bitwise exclusive or (⊕) of two bitstrings is their Ham-
ming distance.

11 A near miss is, roughly, that two different messages produce hash values which, though differ-
ent, are very similar. For example, two hash values are identical except for one or two bits.

12 Or likewise, one could say that it is hard to guess MAC (K, M) with a chance of success signif-
icantly higher than 1/2k , where k is the length in bits of the hash value.



3.2. Special Properties 35

Keyedness
(mutually exclusive)

Non-
Keyed

Keyed
(MAC)-

�

×
×

Freedom One-Way
Weakly

Collision-
Free

Strongly
Collision-

Free

Correlation-
Free- - -

� � �

× × ×

Key Dependency
(only for MACs)

Key-
Dependent

Chosen Text
Attack-

Resistant
-

�

×

Incrementality
(mutually exclusive) Incremental

options
in

between

Strictly
Non-

Incremental
- -

� �

× ×
× ×

FIGURE 3.2: The relation between various properties of cryptographic hash
functions. For the menu items keyedness and incrementality, the options are mu-
tually exclusive. For the menu items freedom and key-dependency, the options are
increasingly stronger from left to right (e.g. correlation freedom implies strong
collision freedom, but not vice versa).

Incrementality For an explanation of the property of incrementality, we refer
to Section 3.6. We mention it here for completeness only.

With the complete menu given, we can introduce some commonly used
terms for cryptographic hash functions: A one-way hash function (OWHF) is
one that is not keyed, one-way and weakly collision-free. A collision resistant
hash function (CRHF) is an OWHF that is also strongly collision-free. There
also exists something like a universal one-way hash function (UOWHF), which
is stronger than an OWHF but weaker than a CRHF [NY89]. We omit its defi-
nition for reasons of simplicity.13

A Message Authentication Code (MAC) is considered to be key-dependent
and resistant against a chosen text attack. It should be noted that key-depend-
ency and resistance against a chosen text attack jointly imply that a keyed hash
function is (strongly) collision-free and one-way for someone who does not
know the key K. However, a MAC may, by design, actually not be one-way
and not collision-free for someone who does know the key K. Thus, a MAC
MAC (K, M), with a publicly known key K, should not be considered equiv-
alent to a CRHF (or even a OWHF) H(M): the MAC may have none of the
interesting properties of the CRHF (!)14

13 For completeness, there are also things like universaln, strongly universaln and strongly universalω
classes of hash functions [CW79, WC81].

14 For this reason, many experts feel that a MAC should not be considered a cryptographic hash
function at all. For completeness and clarity, we have chosen to include MACs in this survey.



36 Chapter 3. Cryptographic Hash Functions

3.3 The Random Oracle Model

It has been proven that strong collision freedom is an insufficient property to
guarantee information hiding and randomness [And93]. Information hiding and
randomness are, stated informally:

Information Hiding The hash value (H(x)) does not leak any information on
the pre-image (x).

Randomness The output of the hash function is indistinguishable from ran-
dom noise.

The history of the definition of cryptographic hash functions is littered with
problems popping up every now and then. One cycle of history typically in-
cludes: (1) the formal definition of one of the abovementioned properties, (2)
the use of a function satisfying the property in some protocol, (3) finding out
that the protocol can be broken by some attack on the hash function, and (4)
adjusting the definition of a hash function to defy the attack. The properties
of one-wayness, weak collision resistance, strong collision resistance and cor-
relation freedom should be regarded as iterations of progressive insight. Not
so long ago, strong collision resistance was considered sufficient for many ap-
plications, whereas now for the same applications correlation freedom is con-
sidered necessary. I would not at all be surprised if correlation freedom will at
some point in the near future be proven insufficient for many applications as
well.

In fact Preneel, one of the most respected researchers in the field of cryp-
tographic hash functions, recently stated that “we understand very little about
the security of hash functions” and “designers have been too optimistic (over
and over again. . . )” [Pre05].

This symptomatic practice leads to the more fundamental question of what
notion it is we would like to actually define. What ‘real, practical’ proper-
ties do we believe a ‘real’ cryptographic hash function actually has? The ideal
cryptographic hash function differs from a random function only in that it is
deterministic and easy to compute. This defies any formal expression, and the
random oracle model is the next-best thing one can get. We will introduce this
model now.

The purpose of the random oracle model [BR93], introduced by Bellare and
Rogaway, is to provide protocol designers with a clear definition of what they
can expect from an ‘ideal’ cryptographic hash function (the random oracle).
Whether such ideal cryptographic hash functions actually exist, is a completely
different question. The random oracle satisfies ‘any property one generally
addresses to the notion of a cryptographic hash function’. When designing a
protocol, this is of course very useful. A random oracle is defined as follows:

Definition 3.2 (Bellare-Rogaway). A Random Oracle R : {0, 1}∗ → {0, 1}∞ is
a map available to all parties15, good and evil, and every party is allowed to ask the
15 There are no such things as ‘private oracles’.



3.4. Design Paradigms 37

oracle only polynomially many questions. Each bit of R(x) is chosen uniformly and
independently.

In practical terms, when an oracle is given a question q, it does the following:

1. If the oracle has seen the question q before from whatever party, it gives
the answer it gave upon the previous time when it was asked question q.

2. If the oracle has never seen the question q before, it returns a random
string of infinite length.

The poser of the question may (and in all practical cases will) instruct the
oracle not to physically return the full length random string, but just a prefix
of this string of a certain given length.

It is easy to see that a Random Oracle satisfies the properties of information
hiding and randomness, as well as all the properties given in Section 3.2.

When using the Random Oracle Model, all calls to a cryptographic hash
function are replaced with calls to the oracle (which one might call a black
box [Sch98]). Then the protocol is proven correct within this setting. Because
such oracles do not seem to exist in real life, the oracle consult has to be re-
placed again by a call to a ‘suitable’ cryptographic hash function16, when such
a protocol is deployed in real life.

The Random Oracle methodology is not sound: though it can help de-
tecting protocol flaws, protocols proven secure in the Random Oracle Model
cannot be assumed secure when the oracle is replaced by an implementation
of a cryptographic hash function [CGH98]. Moreover, it is shown that to re-
place the oracle with an implementation, one faces some very serious prob-
lems [BGI+01]. Nevertheless the Random Oracle methodology is a very valu-
able one. It provided the best formalization of the properties addressed to
cryptographic hash function so far. It has been of great value to protocol design
and analysis. Protocols proven correct in the Random Oracle methodology can
‘in real life’ only be broken by an attack on the internal structure of the hash
function, within the setting of protocol interactions [BM97].

3.4 Design Paradigms

The operational design of a hash function is as complex as its definition. But
how are cryptographic hash functions actually designed? There are currently
two paradigms, the Merkle-Damgård paradigm, and the randomize-then-combine
paradigm. Both paradigms chop up the pre-image of the hash function in a
series of fixed-length blocks of bits, and then combine these blocks in some
specific way. Depending on the paradigm, the combining specifics differ.17

16 The notion of ‘suitable’ has not yet been formalized in the literature.
17 Furthermore, when these paradigms are compared with modes used in cryptography, one can

see the Merkle-Damgård paradigm has some similarities to the cipher-block chaining (CBC)
mode, and the randomize-then-combine paradigm has some similarities to the electronic code-
book (ECB) mode.



38 Chapter 3. Cryptographic Hash Functions

IV -

M1

?
f -

M2

?
f -

. . .

. . . -

Mn

?
f - Finalization - Hash Value

FIGURE 3.3: A Merkle-Damgård hash function. The message M consists of n
blocks of the same size, M1,M2, . . . Mn. The initialization vector IV has a fixed
value. The function f is called the compression function.

Because the length of individual blocks is fixed, the original message has to
be modified (padded) in such a way that its length is a multiple of the block
length. This can be done by adding zeroes at the end of the message until its
length is a multiple of the block length. Care has to be taken to make sure
that this padding procedure does not weaken the hash function by mapping
different pre-images to the same modified pre-image. This problem is solved
by encoding the length of the pre-image into the padded message.18

Merkle-Damgård In the Merkle-Damgård paradigm [Mer90b, Dam90], the
individual blocks are combined by means of a compression function f ,
which takes as input the ‘hash so far’ and the next message block. At
the beginning of the message, the ‘hash so far’ is a constant initialization
vector (IV ). When all blocks have been processed, the ‘hash so far’ may
undergo some finalization, which results in the hash value. In Figure 3.3
the information flow of a hash function using this design is shown graph-
ically.

A hash function in the Merkle-Damgård paradigm is chaining (or iter-
ative): blocks earlier in the sequence influence how the blocks later in
the sequence are processed. One implication of this is that this type of
hash functions cannot be parallellized: adding more hardware cannot
speed up the computation of a hash value. Examples of hash functions
using this paradigm are MD5, SHA-1 and RIPEMD-160 [DBP96]. Merkle
and Damgård have proven that if the compression function is strongly
collision-free, then so is the whole hash function [Mer90b, Dam90].

Randomize-then-combine Another approach to cryptographic hash function
design is provided by the randomize-then-combine paradigm by Bellare et
al [BM97, BGG95, BGG94]. Instead of sequentially processing all blocks
of the message, the n blocks are processed independently by a random-
izing function g19. The n obtained results are then combined using some
well-chosen combining function �. This combining function � is chosen
in such a way that it is associative20 and commutative21 within a group.

18 This technique is sometimes called MD-strengthening.
19 In [BM97] the randomizing function is denoted with h, but we will use g instead. The ran-

domizing function could be considered the equivalent of the compression function f in the
Merkle-Damgård paradigm.

20 The parentheses may be moved or removed, e.g. ((x + y) + z) = (x + (y + z)) = x + y + z.
21 The terms may be re-ordered, e.g. x + y = x + y.



3.4. Design Paradigms 39

M1

?

1

@@R
g

Q
Q

Q
Q

Q
Qs

M2

?

2

@@R
g

A
A
A
AU

. . .

. . .

. . .

Mn

?

n

@@R
g

�
�

�
�

�
�+���r

?
Hash Value

FIGURE 3.4: A hash function of the randomize-then-combine paradigm. The
message M consists of n blocks of the same size, M1,M2, . . . Mn. The random-
izing function g combines a message block Mi with its sequence number i. The
combining function� combines the results of all invocations of the randomizing
function g into one hash value.

Thus, there is also an identity element22 1 and an inverse23 −1 with re-
spect to the combining function�. The function g takes as input not only
a message block, but also the sequence number of the message block.
This has to do with the commutative nature of the combining function:
without the sequence number it would be trivial to construct collisions
for the hash function as a whole. A graphical picture of the information
flow in a hash function of this paradigm is shown in Figure 3.4.

There are various options for choosing a combining function, such as
multiplication within a suitable group G (MuHASH) or modular addi-
tion (AdHASH). Bellare and Micciancio have proven that if the discrete
logarithm in G is hard and g is “ideal”, then MuHASH is strongly colli-
sion-free; and that AdHASH is a UOWHF if the weighted knapsack problem
(which they define)24 is hard and g is “ideal” [BM97]. Similar results have
been obtained by Impagliazzo and Naor [IN96]. Computationally these
combining operations are cheap. The bitwise exclusive or (⊕) is no good
candidate for the combining function in the case of a non-keyed hash:
it can easily be proven insecure [BM97]. However, within a MAC the
bitwise exclusive or can be applied [BGR95].

22 x� 1 = x
23 x� x−1 = 1
24 The weighted knapsack problem is a modification of the subset sum problem, which is a special

case of the knapsack problem. These are all problems in combinatorial optimization. The subset
sum problem and the knapsack problem are well known NP-complete problems. The weighted
knapsack problem is defined in [BM97] and is assumed to be NP-complete.



40 Chapter 3. Cryptographic Hash Functions

hash function bit size
year of

publication reference status
MD5 128 1992 [Riv92] obsoleted by [WY05]
RIPEMD-160 160 1996 [DBP96]
SHA-1 160 1992 [Nat92] obsoleted by [WYY05]
SHA-224 224 2004 [Nat04]
SHA-256 256 2002 [Nat02]
SHA-384 384 2002 [Nat02]
SHA-512 512 2002 [Nat02]

TABLE 3.1: Some commonly used cryptographic hash functions and the size of
the hash values they produce.

Because of the independency of the computation of g, and the nature of
the combining function �, the computation of a hash value can be done
in parallel. There is another advantage of the randomize-then-combine
paradigm: it is incremental. This roughly means that once a hash value
h = H(x) is computed, and the pre-image x is modified into x′, the time
required to compute h′ = H(x′) is “proportional” to the “amount of dif-
ference” between x and x′ [BGG94]. The implications of incrementality
will be addressed in Section 3.6.

In both paradigms, there is a strong dependency on the strength of an in-
ternal function: the compression function f in case of the Merkle-Damgård
paradigm, and the randomizing function g in case of the randomize-then-com-
bine paradigm. Neither paradigm gives specific instructions on how to con-
struct this function, except that it should be strongly collision-free. In practice,
these functions are chosen to be complex myriads of bitwise operations such
as shifts, rotations, ors, exclusive ors, ands and negations. That such a function
f or g constructed in this way is strongly collision-free, is no more than a bold
claim. For the two most-used hash functions MD5 and SHA-1, the conjectures
that its compression functions are strongly collision-free, have been shown to
be overly optimistic [WY05, WYY05].

The fixed size of the hash value influences the strength of the corresponding
cryptographic hash function: it is trivial to find collisions for a hash function
that produces hash values of, say, only 8 bits in length, and it will be impossi-
ble to find collisions on a good cryptographic hash function which creates hash
values of 216 bits long. What hash sizes are practical and whether it is computa-
tionally feasible to find collisions depends on the state of the art of computing
power: if the hash size is chosen too small, collisions are easily detected, and
if it is chosen too large, the computational and storage requirements grow too
large. For illustrational purposes, Table 3.1 shows the hash sizes for various
hash functions, commonly known and used in 2006.



3.5. Common Applications 41

3.5 Common Applications

In this thesis, we will introduce a new application domain of cryptographic
hash functions. To be able to see how our application differs from existing
applications of cryptographic hash functions, we will describe the spectrum of
uses for cryptographic hash functions:

1. password protection

2. manipulation detection

3. optimization of existing cryptographic signature schemes

4. creation of new cryptographic signature schemes

5. random-number generation

6. creation of (symmetric) encryption schemes

7. commitment schemes

8. computational currency and spam protection

In all applications, the description of the hash function is public. We will ex-
plain the applications one by one in more detail:

1. Probably the oldest application of cryptographic hash functions is protec-
tion of the password file. On a computer system with password-protected
user accounts, one needs to store passwords in such a way that (1) the
passwords cannot be derived from the password file, but (2) the pass-
word file should contain enough information to positively identify some-
one who claims to know a specific user password. The solution is to store
the user name and the hash value of the password together in the pass-
word file25.

2. The best known application of cryptographic hash functions is to protect
data from being manipulated by a malicious party: a hash value can be
used to establish message integrity. Computing hash values and com-
municating these over the same communication channel as the message
itself will however not help anything, since the hash value is subject to
the same manipulation powers of the adversary as the original message.

When a MAC is used, the integrity of the message depends on the se-
crecy of the key used: it depends on the quality of the key management26.
When a non-keyed cryptographic hash function is used, the integrity of
the message is transferred to the integrity of the hash value: the hash
value needs to be protected against manipulation in some way or another.
One way to accomplish this is to use a separate authenticated communi-
cation channel, another way is to cryptographically sign or encrypt the

25 This solution is not without problems, though. Badly chosen passwords can be detected by
dictionary attacks.

26 Note that the keys used in MAC are symmetric: the sender and the verifier share the same key.
The method for message authentication presented by Tsudik in [Tsu92] is roughly equivalent to
the use of a MAC.



42 Chapter 3. Cryptographic Hash Functions

hash value, thereby reducing the problem of integrity to a problem of
key management.

3. Transferring the integrity of a large amount of data to the integrity of a
smaller amount of data (as explained in the previous application) can also
help to optimize schemes in which large amounts of data must be crypto-
graphically signed. Methods for cryptographic signatures are generally
computationally expensive, and computational costs often grow super-
linearly in the size of the data to be signed. This makes cryptographically
signing a message of one megabyte in size very — if not prohibitively —
expensive. Instead, one can compute the hash value of the same message,
and sign the hash value [Dam88]. Using this two-step signature scheme,
the cost of signing a message is linear in size of the input instead of super-
linear. Moreover, this scheme saves storage space, since a cryptographic
signature is generally about the same size as the message signed. When
using two-step signing, the signature is about the size of the hash value,
instead of the size of the original message.

In communication, cryptographic signatures facilitate integrity, authen-
ticity (the receiver can verify that the sender is who he claims he is) and
non-repudiation (the sender cannot deny having sent the message). In
software protection, cryptographic signatures facilitate the detection of
malware and Trojan horses.27 Theoretically, cryptographic hash functions
are not required for these applications, but cryptographic hash function
help to optimize these applications up to the point that they are actually
feasible.

4. It is also possible to build cryptographic signature schemes from cryp-
tographic hash functions alone, but these schemes are merely a proof of
concept and they are not very practical because they require a large pub-
lic storage. There are four known hash-based digital signature schemes:
Diffie-Lamport [DH76, page 35], Winternitz [Mer90a, page 227], Merkle
[Mer90a] and Rabin [Rab78].

5. Yet another use of a cryptographic hash function is to use it to build a
pseudorandom number generator (PRNG) or even a cryptographically se-
cure pseudorandom number generator (CSPRNG). In the latter case it is
required to keep the pre-image28 secret.

6. The output of a CSPRNG can in turn be used as a keystream for a one-
time pad (OTP)29, which is an algorithm for symmetric encryption30. An
algorithm for symmetric encryption can also be built directly from a cryp-
tographic hash function, by making it the F-function in a Feistel cipher

27 The best known example of such a malware detection software is Tripwire, which runs on UNIX
systems.

28 In the design of PRNGs, the pre-image is also called the seed.
29 The OTP is also called the Vernam cipher.
30 Of course, a true OTP uses a keystream that is truly random, and does not depend on a seed of

a fixed size. Therefore, an OTP using a hash function based keystream is not unbreakable, as
opposed to a true OTP.



3.5. Common Applications 43

[Fei73, FNS75]31.

7. Commitment schemes can also be built using cryptographic hash func-
tions. In a game or protocol, a player can commit to a particular chosen
value M without instantaneously disclosing the value by publishing only
the hash value H(M). Later on in the game the player must disclose M .
Since the player has published H(M), he cannot choose to publish an-
other message M ′ since H(M ′) 6= H(M) [DPP94, Dam97, CMR98].

8. A relatively recent application of cryptographic hash functions is to cre-
ate some kind of computational currency unit. The idea is this: the dif-
ficulty of finding a collision in a cryptographic hash function depends
on the bit length of the hash values it produces. Thus, by trimming the
size of a hash value to an appropriate length, it is possible to create puz-
zles that are moderately hard to solve, but at the same time still tractable
(cf. [DN93]). For example, it is feasible to create two pre-images such that
the first 20 bits of their hash values are the same32. We call this a partial
hash collision. The interesting feature here is that though it is costly to find
partial collisions, it is very cheap to verify them. By showing two pre-
images which result in a partial hash collision, one can ‘prove’ to have
invested a certain amount of computation time. This can be used to com-
bat spam, by accepting only emails for which sufficient computation time
has been invested (e.g. Hashcash [Bac02]). It can also be used to construct
a transferable currency unit in peer-to-peer (P2P) systems [GH05].

As can be seen from the examples just described, cryptographic hash func-
tions have a lot of applications. This does not mean that every application of
a cryptographic hash function is legitimate in the sense that it offers crypto-
graphic guarantees. For example, the hash values used to identify files in P2P
filesharing systems do not provide any guarantees on the files exchanged via
such a P2P filesharing system. Fortunately, no such guarantees are suggested
by P2P systems. That it is easy to illegitimately assume guarantees from the use
of a cryptographic hash function is demonstrated by security expert Schneier.
His first explanation on cryptographic hash functions reads [Sch96, page 31]:

“If you want to verify someone has a particular file (that you also
have), but you don’t want him to send it to you, then you ask him
for the hash value. If he sends you the correct hash value, then it is
almost certain that he has that file.”

31 In general, when choosing an encryption algorithm, the option of a hash-function based one
may not be the best choice in terms of efficiency. Nevertheless, there may be legal reasons to
choose for such a function. The United States of America have strict rules for the export of cryp-
tographic software; cryptographic software is considered a type of military arms. Within these
export rules, cryptographic hash functions are sort-of neglected. Thus, to legally circumvent
these export limitations, it can help to use encryption algorithms based on cryptographic hash
functions. In the years just before ‘9/11’, these export rules have been relaxed somewhat, but
there are still limitations.

32 By feasible we mean here that such a collision can be found within approximately one second
on workstation hardware current in 2006.



44 Chapter 3. Cryptographic Hash Functions

Equivalent claims are made in [BAN89b, AvdHdV01]. The precise claim
in [BAN89b] will be the subject of Chapter 5. Unfortunately, the claim is false.
The problem is that in the above situation sketch, there is no mention that the
file should be kept secret. If there is a third person who is willing to publish
the hash value of the file, anybody can ‘prove’ possession of the file.

However, it is possible to use cryptographic hash functions to prove posses-
sion of specific information. It is more complex than Schneier assumed. Chap-
ter 8 will address the specifics of this application, which are far from trivial.
Chapters 9 and 10 of this thesis will actually show protocols for this applica-
tion. These protocols require a specific kind of cryptographic hash function:
the non-incremental hash function. In the next section, we will explain and de-
fine what that is.

3.6 (Non-) Incrementality

Bellare, Goldreich and Goldwasser have introduced the randomize-then-com-
bine paradigm to show that incremental cryptographic hash functions can be
built. The concept of incrementality deserves attention, because it shows that
certain cryptographic hash functions possess properties we do not desire for
our purposes in this thesis. In this section, we will explain what we do require.
To give some context to our definition, we will first informally explain what
incrementality is.

Suppose one wants to send to many different people a signed message that
is essentially the same, except for some small parts, such as the addressee field
or the date. For every single individual message, the signature has to be recom-
puted. As the number of similar signed messages grows, the cost of computing
the signatures grows as well. Does this mean that signing one million messages
is one million times as expensive as signing just one message? In fact, it need
not be. Just as buying one million copies of the same book is not one million
times more expensive than buying just one copy, it is possible to get a quantity
discount on the computational cost of cryptographic signatures.

The terms and conditions of the discount are as follows: the signature
should use a two-step signature scheme, and the hash function involved
should be incremental. The original message must be hashed in the ‘old-fash-
ioned’ way at least once. To obtain a hash value for every consecutive message,
a procedure should be followed, which uses the hash value of the original mes-
sage, and a description of how the current message differs from the original
message. The amount of discount you get on the signature consecutive mes-
sage is inversely correlated to the size of the difference description. Thus, if the
body of messages you wish to sign is highly homogeneous, you will get a large
discount. If on the other hand the messages are unrelated, your discount will
be very small. Similarly, the discount one may get when ordering one million
different books will never be as big as when one orders one million copies of
the same book. In Figure 3.5 the idea of incremental hash functions is shown.

The practical advantage of incremental hashes and signatures is question-



3.6. (Non-) Incrementality 45

���
�

�
��

�
�

�

�
�

��

�
�

�
�

�
�

�
�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�
�

�
�

�
�

�
�

��

�
�

�

�
���
���

���
�

�
��

�
�

�

�
�

��

�
�

�
�

�
�

�
�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�
�

�
�

�
�

�
�

��

�
�

�

�
���
���

���
�

�
��

�
�

�

�
�

��

�
�

�
�

�
�

�
�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�
�

�
�

�
�

�
�

��

�
�

�

�
���
���Dear ,

blah blah
bla-bla bla
blah bla!
regards,

Dear John,
blah blah
bla-bla bla
blah bla!
regards, M

Dear Sean,
blah blah
bla-bla bla
blah bla!
regards, M

Dear John,
blah blah
bla-bla bla
blah bla!
regards, W

Dear Sue,
blah blah
bla-bla bla
blah bla!
regards, M

message number 1 2 3 · · · ∞

individual cost size(M1) size(∆2) size(∆3) size(∆i)
incremental
average cost size(M1) size(M1)+size(∆2)

2
size(M1)+2·size(∆)

3
size(∆)

FIGURE 3.5: Incremental hash function in action. For the first message, the
full message must be consulted. For the next messages, the computation of
the hash depends only on the amount of difference of the current message to
the first message. As the number of messages grows to infinity, the average
cost of hashing a message converges to the average amount of difference. The
description of the difference between M1 and Mi is denoted ∆i, and size(∆)
denotes the running average of size(∆). The size of ∆ is roughly proportional
to the size of the ‘not-wiped out’ part of messages 2, 3 and onwards.

able. The cost of physically sending a signed message is still proportional to
the length of the message. Speeding up the process of creating the signature
cannot change that, and will therefore not shorten the whole process of signing
and sending a message by more than a constant factor. In fact, the advantages
of incremental hashing and signing do only matter if the person generating
the hash of the message does not send the message as often as he signs it. In
[BGG94, BGG95] some application domains of incremental hashes and signa-
tures are described, including virus protection and signed streaming media.

Incrementality offers some slight advantages, but it also has some clear dis-
advantages. Consider the following situation:

Bob wants Alice to prove she possesses M , but Bob doesn’t want
Alice to send the full message M . Bob knows that the hash value
h of M is publicly known, and therefore Bob certainly cannot ask
Alice to send just h. Bob decides to create a ‘difference description’
∆, which describes how to transform M into M ′.

Bob asks Alice to present the hash value h′ of M ′.

This protocol is faulty: Alice can ‘prove’ possession of M by exploiting the
incrementality of the hash function. That is, Alice can construct H(M ′) without
possessing M or being able to construct M . Thus, for a protocol like this one to
be correct, it is necessary that the hash function is not incremental. In that case,
the only way to compute H(M ′) is to construct M ′ first, and then compute its
hash value.



46 Chapter 3. Cryptographic Hash Functions

It is not trivial to give a precise formal definition of non-incrementality.33

Let us give an informal description of the notion of non-incrementality:

Non-Incremental A cryptographic hash function is non-incremental, if it is
always necessary to have the full pre-image at hand to compute the hash
value of this pre-image.

Hash functions from the randomize-then-combine paradigm are obviously
incremental, so that kind of hash functions will not do for our purposes. Hash
functions from the Merkle-Damgård paradigm are sort-of incremental, but in a
less obvious way. To verify this, see that to compute H(M1 ·M2), the algorithm
computing the hash value passes through a local state where M1 has been read,
but M2 not yet. This local state can be stored. To compute H(M1 ·M ′

2), where
M2 6= M ′

2, it is sufficient to know the local state and M ′
2. This problem can be

circumvented by defining H(M) to be equal to HMD(M · M): the pre-image
M is ‘fed’ twice through the Merkle-Damgård hash function HMD(·). As a
result of chaining (blocks earlier in the sequence influence how the blocks later
in the sequence are processed), all blocks of the first iteration of message M ,
influence the processing of all blocks of the second iteration of M . Therefore,
it is not possible to store a local state that allows one to compute H(M1 ·M2)
without knowing M1.

The solution we propose, to feed the pre-image twice through the hash
function is not totally new; Ferguson and Schneier have proposed this solu-
tion and similar solutions to fix the length-extension weakness of the Merkle-
Damgård paradigm [FS03, pages 90–94]. This is not unexpectedly, as length-
extension and incrementality are interrelated properties.34

3.7 Conclusion

In this chapter, we have explained what a cryptographic hash function is, and
elaborated on some of the difficulties in defining cryptographic hash functions.
Moreover, we have shown that incrementality, a property often considered a
feature of some cryptographic hash functions, can actually be a drawback. We
have informally but precisely defined non-incrementality, a property that guar-
antees the specific function does not have this drawback.

In this thesis, we will give a new application of cryptographic hash func-
tions. For this application, we require that it is

1. non-keyed,
2. correlation-free and
3. non-incremental.

We will prove our protocols correct in the random oracle model.
33 Given the general history of hash function definitions which is sparkled with erroneous defini-

tions, we do not feel safe enough yet to give a formal definition at this point.
34 It is beyond the scope of this chapter to explain the length extension weakness of the Merkle-

Damgård paradigm, consult [FS03, pages 90–94] for a good explanation.




