
Chapter 2

A number of common subjects in security and
cryptography literature are briefly explained:

primitives, protocols, encryption, authorization,
authentication, probabilistic algorithms,

oblivious transfer, adversary models, secure
multiparty computation and zero-knowledge

proofs.

Preliminaries

When one talks about security in the context of computers, there are roughly
two types of security to distinguish. Computer security is concerned with the
protection of the computer itself, typically against viruses, malware, Trojan
horses and hacker attacks. Information security is concerned with the protec-
tion of valuable information that may reside on or pass through a computer,
typically against unauthorized manipulation and theft. In practice these two
types of security are closely related: when a computer is compromised, the in-
formation that resides on the computer is no longer secure against theft and
unauthorized manipulation. The two types of security can be independent tar-
gets of crime: many viruses only compromise computers to send out spam,
and not to steal information; information can be stolen without compromising
a computer.

In this thesis, we focus on the information security type of security.

The discipline of cryptography is concerned with hiding the meaning of a
message (rather than hiding its existence). There are roughly two subdisci-
plines of cryptography. One focuses on cryptographic primitives, which are al-
gorithms which transform information in cryptographically relevant ways. Ex-
amples of cryptographic primitives are encryption and cryptographic hashes.
The other subdiscipline focuses on cryptographic protocols, also called security
protocols, which are communication methods that use cryptographic primi-
tives. Typical goals of a cryptographic protocols include authentication (proving
that you are who you claim to be) and secure communication (the messages
sent cannot be interpreted or modified by an adversary).

In this thesis, we focus on cryptographic protocols. As cryptographic primi-
tives are the building blocks of cryptographic protocols, they figure frequently.
We design new protocols, and use primitives.

17

18 Chapter 2. Preliminaries

The remainder of the current chapter introduces and explains a vast num-
ber of concepts and subjects common to cryptography which are used through-
out this thesis. One cryptographic primitive is so essential for this thesis, that a
separate chapter is devoted to it: Chapter 3 is about cryptographic hash func-
tions. A particular tool for analysis of cryptographic protocols is so essential
for this thesis, that a number of chapters is devoted to it: Chapters 4–6 are
about authentication logics.

2.1 Encryption

An encryption algorithm is an algorithm that transforms an intelligible message
(also called plaintext) into an unintelligible message (also called ciphertext). To
an encryption algorithm belongs also a decryption algorithm which transforms
the ciphertext back into the plaintext. To prevent that anybody can decrypt
every ciphertext, encryption and decryption algorithms use keys. A key is a
piece of information that is essential for either successful encryption or suc-
cessful decryption of a message. Thus, to protect a piece of ciphertext from
being decrypted, one only has to keep the decryption key secret.

Keeping a key secret only makes sense when it is difficult to guess the key
correctly. For example, if a particular algorithm would only support two dif-
ferent keys, an adversary could simply try both keys, and find out which one
reveals an intelligible message. Therefore, encryption and decryption algo-
rithms use keys that stem from a very large domain. The domain has to be this
large, that it is infeasible to try out all keys, or even any reasonable fraction
of all keys. Trying out all possible keys until one works is called a brute-force
attack. Trying out keys which stem from a precompiled list is called a dictionary
attack.1

Ciphertext messages are unintelligible, but that does not mean that one can-
not infer anything from a ciphertext. Most importantly, the length of a cipher-
text is often closely related to the length of the corresponding plaintext. This is
called message length revealing (as opposed to message length concealing).2

For some encryption and decryption algorithms the encryption key (the key
used to create ciphertext) and the decryption key (the key used to reveal the
plaintext) are equal. This is called symmetric encryption. For other encryption
and decryption algorithms the keys are not the same. This is called asymmet-
ric encryption. In asymmetric encryption, the encryption key is also called the
public key, and the decryption key is also called the private key.

Somebody, say, a person named Whitfield, can create a public key/private
key pair, and publish his public key. Anybody who wants to send a ciphertext
message to Whitfield that only Whitfield can decrypt, can simply encrypt his
plaintext with Whitfield’s public key. Using some tricks which go beyond the
scope of this explanation, Whitfield can also send a message to anyone using

1 The terms brute-force attack and dictionary attack do apply to the process of guessing any secret
information, not just decryption keys.

2 For a comprehensive discussion of what a ciphertext may reveal, consult [AR02].

2.2. Authorization and Authentication 19

his private key, in such a way that anybody who knows the public key can
verify that Whitfield sent the message originally. This is called a cryptographic
signature.

A good introduction to cryptography is [Sin99]. For more technical and
in-depth explanations, consult [Sch96] (slightly outdated) or [FS03].

2.2 Authorization and Authentication

Cryptographic protocols are often used where access control is of concern, in
order to limit who can view or modify particular information. The process of
establishing whether someone should be given access to information is called
authorization.

The difficulty of authorization is often not on the implementation side (does
the implemented policy reflect the actual policy?3) but on the policy side (does
the actual policy reflect the intention of the policy?4). For example, to protect
medical information, a policy could consist of only granting physicians access
to medical files. A system that does just this perfectly can still fail in its ob-
jective to protect the medical files against misuse, as the policy is arguably too
tolerant: it grants every physician access to every medical file, not just to the
files of his clients.

A simple and often-used method for authorization is an access list: a list
of persons who are granted access (for example, a list of a specific group f
physicians). To actually get access, someone has to identify himself (which
is called authentication) and it has to be verified whether the person is on the
list. To some it seems that authentication is necessary for authorization, and
that therefore these terms can be used interchangeably, but that is certainly not
the case. Authorization and authentication can occur independently of one
another. This can best be explained with two examples. To get physical access
to the interior of a car, one has to put the correct key into the lock and turn
it (authorization). When a police officer obliges you to identify yourself, you
have to present your passport or drivers’ license, and doing so does not result
in any access whatsoever5 (authentication).

To complicate matters even further, authentication has a number of other
related meanings, depending on the context. To authenticate a message is to
verify that a message has not been tampered with. In Chapter 8, we coin the
term knowledge authentication for proving that someone has particular knowl-
edge without disclosing it. This may seem distant from authentication in the
sense of proving that you are who you claim you are, but it is not. In crypto-
graphic protocols, the most common way to prove you are who you claim you
are is to prove that you have a particular private key without disclosing it. As
such, knowledge authentication is a generalization of ‘just’ authentication.

3 Answering this question is called verification of a system.
4 Answering this question is called validation of a system or policy.
5 Nevertheless, failing to identify (authenticate) oneself may result in access to the interior of the

police office.

20 Chapter 2. Preliminaries

2.3 Complexity

A central theme in computer science is complexity, and this theme figures in
virtually every discipline of computer science. The fundamental field of com-
plexity theory is so extremely important and intricate, that one single section in
an introductory chapter can only explain a few very basic concepts. The pur-
pose of this section is to give the reader who has no background in computer
science an idea of what complexity is about, and to refresh the memory of the
reader whose years in college may have drifted from the mind.6

Complexity theory is the study of which amount of resources an algorithm
requires, as a function of the size of the input (the ‘problem description’). The
most important resources are time and memory. The time assessment of an algo-
rithm is called its computational complexity and its memory complexity is called
its space complexity.

Complexities can be determined for a particular algorithm, but also for the
fundamental problem that an algorithm solves. The complexity of a particular
problem is a property of the set of all algorithms that solve the particular prob-
lem. More precisely, the complexity of a particular problem is a measure of
the amount of resources that the most efficient algorithm for that particular
problem requires.

Using complexity theory, one can assess whether it is feasible to use a par-
ticular algorithm to solve a particular problem of a particular size. One can
also assess whether feasible algorithms for a particular problem exist at all.
Whether an algorithm is feasible obviously depends on the amount of avail-
able resources.

A notorious class of infeasible problems is the class of NP-complete prob-
lems. Informally, an NP-complete problem is a problem in which a solution
has to be found, and a solution can be verified to be correct in a number of
steps which is polynomial in the size of the input. However, it may be that the
only way to find a correct solution is to try all possible solutions (of polynomial
length). An example of an NP-complete problem is the subset sum problem:
for a given, finite list of integers, find out whether any subset of the integers
sums up to zero. For any given subset, it is very easy to verify whether it sums
up to zero. But there is no algorithm known that determines whether such a
subset exists that is significantly faster than trying every possible subset, which
is very slow. NP-complete problems are so difficult to solve, that by increasing
the problem size slightly, the resource requirements increase dramatically.

NP-complete problems play a central role in cryptography: an encryption
algorithm is only considered good if to construct the plaintext from the cipher-
text, without access to the decryption key, is an NP-complete problem.

Complexity does not only apply to algorithms, but also to communication
protocols. The communication complexity of a particular protocol is a measure of
how many bits are exchanged in a protocol run. A protocol can be seen as a way
to compute a particular function f(X, Y) (the ‘problem’), where X and Y are

6 For a thorough treatment of complexity, consult [BDG88].

2.4. Probabilistic Algorithms 21

trivial-prime-test(n)
for i = 2 to squareroot(n) do

if (divisor(i, n)) then return composite;
return prime;

FIGURE 2.1: A trivial primality testing algorithm. This algorithm gives a def-
inite answer to the question whether n is prime. The algorithm could be opti-
mized somewhat, but the running time remains O(

√
n).

miller-rabin-prime-test(n, k)
for i = 1 to k do

set w to some randomly chosen number 0 < w < n;
if (not witness(w, n)) then return composite;

return prime;

FIGURE 2.2: The Miller-Rabin primality testing algorithm. The accuracy of this
algorithm depends on the security (‘certainty’) parameter k, a higher value of
k will increase the accuracy. When this algorithm answers that a number is
composite, then it is indeed composite. On every 4k occasions that this algo-
rithm answers a number is prime, the expected number of errors is at most one.
The function witness is a subroutine performing some specific arithmetic test
between w and n. The running time of this algorithm is O(k ln ln lnn).

known to separate parties. The communication complexity of a particular problem
is a measure of how many bits need to be exchanged between the parties in the
most efficient protocol that computes f(X, Y) [Yao79, Kus97].

2.4 Probabilistic Algorithms

For many computational problems, it is very easy to specify how they should
be solved. For example, a program that gives a definite answer to the question
whether a specific number is prime, is only a few lines long (see Figure 2.1).
For large numbers, this primality testing algorithm would take a prohibitively
long time to compute. It is possible to improve dramatically on the computa-
tion time of this test, if we allow the test to be wrong in its answer in only a
negligible fraction of the occasions it is invoked. Such an algorithm is a prob-
abilistic algorithm, and it requires access to some source of randomness (like a
virtual coin which it may flip).

Probabilistic algorithms have the very tricky property that they typically
detect the opposite of the property one is interested in. When it fails to detect
the opposite, it guesses the affirmative to be the case. A well known example
of a probabilistic algorithm is the Miller-Rabin primality test [Mil75, Rab80]
(shown in Figure 2.2). This algorithm tries to find proofs of compositeness7 of
a number n. If it fails to find such a proof for a sufficiently long time, it will

7 Compositeness is the opposite of primality.

22 Chapter 2. Preliminaries

assume that n is a prime. This is not just some ‘guess’, it can be proven that the
chance that the assumption is wrong can be made arbitrarily small, depending
on the time the algorithm invests in finding proofs of the opposite.

Thus, a probabilistic algorithm is an algorithm that may give the wrong
answer, but only in very few cases. Probabilistic algorithms are employed be-
cause they are often much much faster than non-probabilistic algorithms. Al-
most all algorithms used in practice in cryptography are probabilistic.

2.5 Oblivious Transfer

Oblivious transfer (OT), introduced by Rabin [Rab81] is a type of protocol
in which the sender sends a bit with probability 1/2, and remains oblivious
whether it was received. Even, Goldreich and Lempel generalized this type
of protocol to 1-out-of-2 oblivious transfer [EGL85]. In One out of two oblivious
transfer, the sender sends two messages, and the receiver can choose to read
one of the messages. The receiver can read that single part of the message, but
not the other. What message has been chosen, remains secret to the sender.

This rather weird type of protocol has a wide range of applications. For
example, it can provide anonymity to buyers of digital goods. The seller (the
sender in the protocol) cannot determine what the buyer has bought, but the
seller can verify the item is paid for and only one single item is delivered
[AIR01]. Oblivious transfer also has applications in auctions [Lip04]. In gen-
eral, oblivious transfer is a building block for more complex protocols. There-
fore, though oblivious transfer is technically a kind of cryptographic protocol,
it is often considered a cryptographic primitive.

2.6 Adversary Models

The strength of a security protocol depends on the strength of the party that
tries to break the protocol. Thus, when assessing the security of a protocol, one
has to make assumptions about what the adversary is willing to do and about
what he is capable of. Such an assumption is called an adversary model (or a
threat model). There are three common adversary models:

honest The adversary is supposed to completely adhere to the protocol speci-
fication, and not to do anything more than the protocol specification.

honest-but-curious (HBC) The adversary is supposed to completely adhere
to the protocol specification, but is allowed to perform extra calculations
on the information it receives. This model is sometimes called the semi-
honest adversary model. An attacker in this model is sometimes referred
to as a passive attacker.

malicious (Dolev-Yao) The adversary is not required to adhere to the protocol
specification, and is allowed to perform extra calculations on the infor-
mation it receives. Moreover, the adversary is capable of intercepting

2.7. Secure Multiparty Computation 23

any message sent, and is capable of sending any message he is able to
compose. An attacker in this model is sometimes referred to as an active
attacker. [DY83]

In the honest-but-curious and the malicious adversary model, the adver-
sary may perform calculations not specified in the protocol, but the amount
of calculations is polynomially bounded. In particular, the adversary cannot
perform brute-force attacks to find secret keys.

The honest adversary model is very weak, and therefore only erroneously
used. Consider the following protocol for oblivious transfer:

Alice sends Bob a message, but according to the protocol, Bob is
allowed to only look at either the first half of the message, or the
second half of the message.

This protocol is only secure if Alice knows that Bob is honest, that is in
the honest adversary model. Trivially, this protocol is insecure in the honest-but-
curious model.

When a protocol is insecure in the honest-but-curious adversary model, it
is possible for some principal (i.e., a particupant in the protocol or an external
observer) to obtain information that should be kept hidden from the principal.
When a protocol is insecure in the malicious adversary model, it is possible for
some principal to ‘deceive’ some other principal into obtaining false beliefs.

The malicious (Dolev-Yao) model is the strongest model, in the sense that
if a protocol is secure in this model, then it is really very secure. As can be
expected, it is rather difficult to prove a protocol to be secure in this model.

2.7 Secure Multiparty Computation

In his seminal paper “Protocols for Secure Computations” [Yao82], Yao has
given a clear definition of what constitutes secure multiparty computation (SMC).
Suppose there are two principals, Alice who possesses X and Bob who pos-
sesses Y . Alice and Bob are both interested in the value of some function
f(X, Y). A protocol for determining f(X, Y) is an SMC if it satisfies the fol-
lowing conditions:

privacy The inputs X and Y are not mutually disclosed: Alice does not learn
anything about Y except f(X, Y), and Bob does not learn anything about
X except f(X, Y).

validity The protocol actually establishes f(X, Y) and not something else. If
one of the principals cheats, the other principal can detect this.

fairness Either both Alice and Bob learn f(X, Y), or neither of them learns
f(X, Y). Essentially, the probability that one principal knows f(X, Y)
and withholds it from the other principal, is very small.

24 Chapter 2. Preliminaries

autarky Bob and Alice can determine f(X, Y) without the assistance of a third
party.8

Yao showed that if f(X, Y) can be computed on a binary circuit that has
m input wires and n gates, then there exists an SMC protocol with m obliv-
ious transfers and communication complexity of O(n), in a constant number
of rounds [Yao86].9 This may seem a promising result, but the feasibility of
this solution is questionable at least. In 2004, eighteen years after publica-
tion of [Yao86], it was demonstrated that computing the rather trivial function
f(X, Y) = [X < Y] with 0 ≤ X < 16 and 0 ≤ Y < 16 would already take 1.25
seconds [MNPS04]10.

Feige, Kilian and Naor have proven that SMC is possible for any function
f(X, Y), if the condition of autarky is relaxed somewhat: their solution in-
volves a third party, which can only learn the outcome of f(X, Y), but nothing
else. This third party is then supposed to honestly inform Alice and Bob about
the outcome [FKN94]. The communication complexity of their solution, how-
ever, is not convincingly attractive, just as [Yao86].

SMC is not to be confused with secure circuit evaluation (SCE) [AF90], in
which one principal provides the input X , and the other principal provides the
function f(·). The aim in SCE is to compute f(X) without mutual disclosure
of X and f(·). Importantly, SMC is not a special case of SCE because in SMC
it is known to both participants which function is computed. Conversely, SCE
can be perceived as a special case of SMC, where the inputs are X and g(·), and
where the function f(X, g(·)) applies function g(·) to X .

2.8 Zero-Knowledge Proofs

Goldwasser, Micali and Rackoff introduced the concepts zero-knowledge and
interactive proof systems in 1985 [GMR85].

Suppose again that there are two principals, now called Peggy (the prover)
and Victor (the verifier). Peggy wants to convince Victor that she has some very
special knowledge. For example, she knows the secret ingredients to make
Coca-Cola11, she can solve any Rubik’s cube12 (shown in Figure 2.3), or alter-
natively: she knows her own private key. Peggy wants to convince Victor, but
without disclosing the special knowledge itself.

We will first focus more generally on protocols which convince Victor of
Peggy’s special knowledge. Protocols that convince Victor without disclosing
the secret are a subclass of these protocols.

8 The condition of autarky has not been explicitly named as such in [Yao82]. It is included here
for clarity.

9 This result has been generally accepted, but a proof has never been published.
10 This is on two PCs with 2.4 GHz processors, and a communication link with 617.8 MBPS band-

width and a latency of 0.4 ms. If the communication link is changed to a wide-area setting, e.g.
a bandwidth of 1.06 MBPS and a latency of 237.0 ms, the computation time increases to 4.01
seconds.

11 Coca-Cola is a registered trademark of The Coca-Cola Company.
12 Rubik’s Cube is a registered trademark of Seven Towns Ltd.

2.8. Zero-Knowledge Proofs 25

FIGURE 2.3: A Rubik’s cube. Picture courtesy of Seven Towns Ltd.

Definition 2.1 (Interactive Proof Systems13). An interactive proof system for a
set S is a two-party game between a verifier executing a probabilistic polynomial-time
(based on polynomial p) strategy (denoted V) and a prover executing a computation-
ally unbounded strategy (denoted P), which satisfies the following conditions:

completeness For every x ∈ S the verifier V always accepts after interacting with
the prover P on common input x.

soundness For some polynomial p, it holds that for every x /∈ S and every poten-
tial strategy P ∗, the verifier V rejects with probability at least 1/p(|x|), after
interacting with P ∗ on common input x.

The terms soundness and completeness have a meaning different from the
meaning in logic (where it refers to the relation between logics and models).

The soundness condition may seem tricky or weak, but observe that when
such a proof system is repeated O(p(|x|)2) times, the probability that V accepts
for an x /∈ S reduces to 2−p(|x|), which is ‘close to zero’. The fact that the
prover is not computationally bounded should not automatically be consid-
ered a structural problem either: the soundness criterion holds the prover to
not cheating, and any practical implementation of an interactive proof will be
forced to bounded computational resources by mere reality.

If Peggy would like to prove that she knows the solution for any Rubik’s
cube, she could challenge Victor for a scrambled Rubik’s cube. Victor may
choose or construct some scrambled Rubik’s cube x, and hand it over to Peggy.
Peggy could in turn, under the watchful eye of Victor, solve the puzzle. This
rather trivial interactive proof is both complete and sound. It is complete be-
cause if Peggy knows the solution for x, she can solve it. Though Victor may
not be proficient in solving Rubik’s cubes, he can easily verify Peggy’s solu-
tion. This makes the strategy sound. This trivial protocol which proves Peggy’s
knowledge of how to solve a Rubik’s cube, discloses the solution to Victor.

There is also a solution which does not disclose the solution for x to Vic-
tor: when Peggy wants to prove knowledge of the solution of Rubik’s cube x,
Peggy presents another Rubik’s cube y. Victor may then either (1) ask Peggy
to solve y, or (2) ask Peggy to show how x can be transformed into y. Victor

13 This definition, which is cited from [Gol02], is a slight variation of the original definition, which
can be found in [GMR85].

26 Chapter 2. Preliminaries

may not ask both, but he may choose one of both as he wishes. If Peggy is able
to solve every Rubik’s cube, she will be always be able to perform both the so-
lution of y, and the transformation of y into x.14 These two together constitute
the solution of x. But that solution will never be disclosed to Victor, as he will
only see (1) or (2), but never both. The first time Peggy and Victor run this pro-
tocol, Victor might believe that Peggy has had the sheer luck that she knows
the half of the solution that Victor asked for. But if they repeat the protocol k
times, the chance that Peggy does not know the solution reduces to 2−k, which
converges to 0 as k increases.

This second protocol is a zero-knowledge proof : it convinces Victor of Peggy’s
knowledge, without disclosing the knowledge itself. Roughly, a zero-knowl-
edge proof is an interactive proof in which the verifier learns nothing more
than the assertion proven. The more formal definition of ‘nothing more’ states
that anything that Victor learns by means of the protocol, can be computed
just as efficiently from the assertion proven by the protocol alone. For an
elaborate discussion of the definition of ‘nothing more’, consult [Gol02]. For
rather simple explanations and examples of zero-knowledge proofs, consult
[QQQ+90, NNR99].

It has been shown that every NP-complete set has a zero-knowledge proof
[GMW91], provided that one-way functions exist.15 This is a very valuable
result, because it can be used in a cryptographic protocol to convince other
parties that one adheres to the protocol specification without disclosing ones
private inputs. Instead of disclosing the private inputs, principals must pro-
vide a zero-knowledge proof of the correctness of their secret-based actions.
This means that any protocol which is secure in the honest-but-curious adver-
sary model can be transformed into a protocol which is secure in the malicious
adversary model [Gol02]. Unfortunately, the computational complexity and
communication complexity of such a transformed protocol which is secure in
the malicious adversary model may well be very unattractive.

There are some correspondences between secure multiparty computation
(see Section 2.7) and zero-knowledge proofs. Zero-knowledge proofs satisfy
properties roughly equivalent to the the privacy and validity properties of a se-
cure multiparty computation. Privacy because no information on the private
inputs is disclosed, and validity because an interactive proof is both sound and
complete.16 Because the roles of the principals in interactive proof systems are
not symmetric, fairness is not a relevant property. Autarky applies to interactive
proof systems in the sense that no third party is involved.

14 Remember that Peggy may choose y. If Peggy is knows the solution to x, she can construct a
y in such a way that she knows both how to solve y and how to transform y into x. If Peggy
does not know the solution to x, she can guarantee only one of both, giving her a 50% chance of
failing to provide a convincing proof on y.

15 Cryptographic hash functions are a particular type of one-way functions, and are explained in
the next chapter.

16 Again: logicians, take note that sound and complete here are used with the meaning of Defini-
tion 2.1 shown on page 25.

