
Part VI

Appendices

177

Appendix A

‘BAN logic’ does not uniquely identify one single
article in which it is introduced. The relation

between the many versions of the ‘BAN paper’
that exist is explained. We survey the major

critisims of BAN logic in the literature.

Remarks to
Authentication Logics

A.1 A Taxonomy of Versions of the BAN Paper

(Referred to on pages 47 and 56.)
The seminal paper “A Logic of Authentication” has a respectable number

of versions. Its precursor, “Authentication: A Practical Study in Belief and
Action” was presented at the second conference on Theoretical Aspects of Rea-
soning About Knowledge in March 1988 [BAN88, 18 pages]. Then, there is the
DEC technical report, which was published in February 1989 and revised in
February 1990 [BAN89a, 49 pages]. In April 1989, the work was submitted to
the Royal Society of London, which published it in December 1989 [BAN89b,
39 pages]. Also in December 1989, a revised version of the article was presented
on the twelfth ACM Symposium on Operating Systems Principles, which was
also published in the ACM SIGOPS Operating Systems Review [BAN89c, 13
pages]. This led to a paper in the ACM Transactions on Computer Systems
in February 1990 [BAN90a, 19 pages]. In May 1994, an appendix to the DEC
technical report was published [BAN94, 10 pages].

The most notable distinction between these versions is that in the ACM-
published versions and the DEC appendix, the notation of many operators has
changed from symbols (e.g. |≡) to linguistic terms (e.g. believes). These ver-
sions refer to the DEC technical report for full reference. The DEC technical
report and the Royal Society version [BAN89a, BAN89b] should be considered
the most complete versions, due to their size and the fact that these papers
are most often used in self-references of the authors. Martı́n Abadi considers
the Royal Society version the most definite one (on his homepage). These two
versions of the article contain a Section 12, “On Hashing”, which introduces

179

180 Appendix A. Remarks to Authentication Logics

and discusses the inference rule essential in Chapter 5 of this thesis. These
two versions also contain a Section 13, “Semantics”, which defines the partial
semantics for BAN logic, used in Sect. 5.6 of this thesis.

A.2 A Short Survey of Critisisms on BAN Logic

(Referred to on page 54.)
The main criticisms of BAN logic regard the following properties of the

logic:

1. the semantics,

2. the notion of belief,

3. the protocol idealization method,

4. the honesty assumption, and

5. the incompleteness.

These weaknesses of BAN logic have not been a reason to abandon the way
of thinking introduced by Burrows, Abadi and Needham. Many researchers
have tried to ‘repair’ BAN logic. The following pages we will give a short sur-
vey of the critiques and how and where they have been addressed in literature.

The first two critiques of the list above are, in more detail:

1. BAN logic has no (well-defined) semantics
It is not really clear what the constructs in the logic actually represent.1

2. BAN logic does not distinguish between possession and belief
Normally, one would like to distinguish between possessing a sentence
(e.g. “Clapton is God”) and believing such a sentence.

One of the first attempts to fix BAN logic was by Abadi and Tuttle, who in-
troduced AT logic [AT91], which has a slightly better semantics than the origi-
nal BAN logic. A second attempt was by Gong, Needham and Yahalom, who
introduced GNY logic [GNY90]. GNY logic distinguishes between possession
and belief, but has a semantics just about as poor as BAN logic.

Authentication logics with the goal to have a well-defined semantics and
a clear distinction between possession and belief are VO logic [vO93], SVO
logic [SvO94, SvO96], AUTLOG [KW94, WK96] and SVD logic [Dek00]. There
are many crossbreeds of these logics, and the logics have heavily influenced
one another. Often, it is relatively easy to translate protocols and formulae
between these logics.

Except for ‘repairs’ of the original BAN logic, extensions have also been
available in abundance. Here we will mention just a few of the extensions.

1 For a compact treatment on the value of semantics for authentication logics, consult [Syv91].

A.2. A Short Survey of Critisisms on BAN Logic 181

Gaarder and Snekkenes added time-related concepts to BAN logic [GS91], and
Syverson did something similar for AT logic [Syv93]. Kailar and Gligor ex-
tended BAN logic to make it less dependent on jurisdiction2 [GKSG91, KG91].

Analyzing a protocol by hand is a tedious task, and some of the logics have
been designed in such a way that computer-aided analysis can be performed.
In particular, AUTLOG is implemented in PROLOG [KW94], and SVD has an
implementation in the Isabelle theorem prover [Dek00]3. Also, model check-
ers have been used for protocol analysis, most notably by Lowe who found
a major error in the Needham-Schroeder Public-Key protocol (NSPK) in this
way [Low96].

Authentication logics have been tied to radically different approaches for
analyzing security protocols. One of them is the strand-space methodology
[THG98, THG99]. Van Oorschot used Strand-spaces to create yet another se-
mantics [Syv00], and Jacobs used it to create a new logic with an accompanying
implementation in the theorem prover PVS [Jac04]4.

The semantics and the notion of belief have not been the only aspects invit-
ing criticism. The remaining three important avenues of criticism are:

3. BAN logic has a rather vague ‘protocol idealization method’
The process of translating a protocol into the language of the logic is
poorly described and depends on ‘intuitions an intentions’. Clearly, a
rigorous description would be better.

4. BAN logic assumes honest principals
Within BAN logic, it is impossible to model principals which state lies.
This limits the kind of protocol flaws that can be found using BAN logic,
as lying can sometimes be relatively easy and computationally cheap.5

5. BAN logic is incomplete
There are protocol errors which BAN logic fails to identify; in fact, the
class of such protocol errors contains some rather obvious errors.

Critiques on the protocol idealization method of BAN logic have appeared
in [MB93, WK96]. In general, one can say that this problem has been addressed
in almost all authentication logics. Criticism number 4 (honesty), stated in
[GKSG91], boils down to criticism number 2 (possession and belief), and has
been resolved in various ways in most authentication logics.

Incompleteness of BAN logic has been demonstrated by Nessett [Nes90],
who showed a protocol which has a very obvious flaw, which cannot be de-

2 Jurisdiction is the concept that a specific principal in a protocol has designated authority over
some statements. Making BAN logic less dependent on jurisdiction therefore widens the class
of protocols that can be analyzed using BAN logic.

3 For background on Isabelle, consult [NPW02].
4 For background on PVS, consult [ORSvH95].
5 Thus, BAN logic supposedly is a logic in the Honest-But-Curious (HBC) attacker model, instead

of in the Dolev-Yao threat model.

182 Appendix A. Remarks to Authentication Logics

tected in BAN logic6. In some circumstances, incompleteness of BAN logic is
also due to incorrect protocol idealization [BM94].

Solving the problem of incompleteness of authentication logics is difficult
for a number of reasons. One of the challenging problems is that while
strengthening the logic, the modeled inference capabilities (computational re-
sources) of principals should remain the same. Thus, the inference capabilities
of the principals should be constrained (as in [ABV01]). This approach has led
to preliminary completeness results for authentication logics [CD05b, CD05a].

Though the original BAN logic has serious limitations, the way of reason-
ing is useful. The way of reasoning should not be abandoned because of the
flaws in the original logic [HPvdM03]. Moreover, recent results show that it is
possible to create a computational justification of authentication logics [AR02].

6 Burrows, Abadi and Needham replied to this critique essentially by stating that they never
claimed this would be the case [BAN90b]. Moreover, they felt the urge to humiliate Nessett by
calling one of his assumptions “absurd” and questioning his “wit of a man to notice” [BAN90b,
page 40].

Appendix B

In this thesis, we use an extension of GNY logic
to analyze the T-1 protocol. We summarize the

formal language and inference rules of GNY
logic, as presented in [GNY90]. Parts of the

language we do not use are omitted.

Summary of GNY Logic

(Referred to extensively from Chapters 4, 6 and 9.)
In this appendix, we summarize the formal language and inference rules of

GNY logic [GNY90]. Parts of the logic that we do not use are omitted.

B.1 Formal Language

A formula is a name used to refer to a bit string, which would have a particular
value in a protocol run. Let X and Y range over formulae, and +K and −K
over public keys and private keys respectively. The following are also formu-
lae:

(X, Y) conjunction of two formulae. We treat conjunctions as sets with
properties such as associativity and commutativity.

{X}+K public-key (asymmetric) encryption.

{X}−K private-key (asymmetric) signature
We assume a cryptosystem for which {{X}+K}−K = X holds
(i.e., encryption), and for which also {{X}−K}+K = X holds (i.e.,
signatures, e.g. RSA [RSA78]).

H(X) the hash value of X obtained by application of a strongly colli-
sion-free cryptographic hash function (CRHF).

∗X a not-originated-here formula. A formula X is a not-originated-
here formula if a principal receives X without having sent X it-
self before. Thus, a formula is a not-originated-here formula for
a principal P , if it is not a replay of one of P ’s previously sent
messages.

183

184 Appendix B. Summary of GNY Logic

Assertions reflect properties of formulae. Let P and Q be principals. The fol-
lowing are basic assertions:

P C X P is told formula X . P receives X , possibly after performing some
computation such as decryption.

P 3 X P possesses, or is capable of possessing, formula X . At a particular
state of a run, this (X) includes all the formulae P has been told,
all the formulae he started the session with, and all the ones he
has generated in that run. In addition P possesses, or is capable
of possessing, everything that is computable from the formulae
he already possesses.

P |∼ X P once conveyed formula X . X can be a message itself or some
content computable from such a message, i.e., a formula can be
conveyed implicitly.

P |≡](X) P believes, or is entitled to believe, that formula X is fresh. That is,
X has not been used for the same purpose at any time before the
current run of the protocol.

P |≡ φ(X) P believes, or is entitled to believe, that formula X is recognizable.
That is, P would recognize X if P has certain expectations about
the contents of X before actually receiving X . P may recognize a
particular value or a particular structure.

P |≡ P
S↔ Q P believes, or is entitled to believe, that S is a suitable secret for

P and Q. They may properly use it to mutually prove identity.
They may also use it as, or derive from it, a key to communicate.
S will never be discovered by any principal except P and Q.

P |≡+K7→ Q P believes, or is entitled to believe, that +K is a suitable public key
for Q, i.e., the matching secret key −K will never be discovered
by any principal except Q.

Let C range over assertions. The following are also assertions:

P |≡ C P believes, or is entitled to believe, that formula C holds.

C1, C2 conjunctions. We treat conjunctions as sets with properties such
as associativity and commutativity.

B.2 Inference Rules

We repeat all inference rules from [GNY90] used in this thesis. The rule names
correspond to the names used in the original article. The first letter of the
name intends to reflect the category of the rule: T is about being told, P about
possession, F about freshness, R about recognizability, and I about message

B.2. Inference Rules 185

interpretation. Some of the inference rules (P2, F1, I3) have more allowable
conclusions than used in this thesis. These unused conclusions are omitted.

An inference rule that applies to formula X also applies to ∗X , though not

necessarily vice versa. If
C1
C2

is an inference rule then for any principal P so is

P |≡ C1
P |≡ C2

.

T1
P C ∗X
P C X

Being told a ‘not-originated-here’ formula is a
special case of being told a formula.

T2
P C (X, Y)

P C X
Being told a formula implies being told each of
its concatenated components.

T6
P C {X}−K ,

P 3 +K
P C X

If a principal is told a formula encrypted with
a private key and he possesses the correspond-
ing public key then he is considered to have
also been told the decrypted contents of that for-
mula. This rule only holds for public-key sys-
tems with the property {{X}−K}+K = X (e.g.
RSA [RSA78]).

P1
P C X
P 3 X

A principal is capable of possessing anything he
is told.

P2
P 3 X,
P 3 Y

P 3 (X, Y)

If a principal possesses two formulae then he is
capable of possessing the formula constructed
by concatenating the two formulae.

P3
P 3 (X, Y)

P 3 X

If a principal possesses a formula then he is ca-
pable of possessing any one of the concatenated
components of that formula.

P4
P 3 X

P 3 H(X)

If a principal possesses a formula then he is
capable of possessing the hash value of that
formula obtained by application of a strongly
collision-free (collision resistant) cryptographic
hash function (CRHF)

.

P8
P 3 −K,
P 3 X

P 3 {X}−K

If a principal possesses a formula and a private
key then he is capable of possessing the decryp-
tion of that formula with that key (i.e., the cryp-
tographically signed formula).

F1
P |≡](X)

P |≡](X, Y)

If a principal believes a formula X is fresh, then
he is entitled to believe that any formula of
which X is a component is fresh.

186 Appendix B. Summary of GNY Logic

R6
P 3 H(X)
P |≡ φ(X)

If P possesses a formula H(X), then he is enti-
tled to believe that X is recognizable.

I3 P C ∗H(X, S), P 3 (X, S), P |≡ P
S↔ Q, P |≡](X, S)

P |≡ Q |∼ (X, S)

Suppose that for principal P all of the following hold: (1) P receives a formula
consisting of the hash value of X and S marked with a not-originated-here
sign; (2) P possesses S and X ; (3) P believes that S is a suitable secret for
himself and Q; (4) P believes that either X or S is fresh. Then P is entitled to
believe that Q once conveyed the formula X concatenated with S.1

I4 P C {X}−K , P 3 +K, P |≡+K7→ Q, P |≡ φ(X)
P |≡ Q |∼ X, P |≡ Q |∼ {X}−K

If P sees a signed message {X}−K , knows the public key +K, knows the cor-
responding private key −K belongs to Q, and recognizes X to be a message,
then P is entitled to believe that Q once conveyed the signed message {X}−K ,
and thus also once conveyed the message X itself.

I6
P |≡ Q |∼ X,
P |≡](X)

P |≡ Q 3 X

If P believes that Q once conveyed formula X
and P believes that X is fresh, then P is entitled
to believe that Q possesses X .

1 It should be noted that rule I3 as given here differs slightly from the definition in [GNY90],
which uses the notation 〈S〉 in some places instead of S to denote that S is used for identifica-
tion. This is non-essential and only syntactic sugar. For readability of the proofs, these brackets
have been omitted throughout this thesis.

Appendix C

There are many articles closely related to
knowledge authentication which deserve some
detailed comments because they contain minor

(or major) flaws, while the comments are outside
of the scope of Chapter 8 (Knowledge

Authentication). These comments are bundled
here.

Remarks to
Knowledge Authentication

C.1 The ‘French Approach’

(Referred to on page 115.)
In Table 8.1, a list of protocols is shown. The protocols presented in [DQB95,

QBA+98a, QBA+98b, QAD00, Ber04, CC04] are omitted from this table. These
omitted protocols are mainly protocols developed in the medical domain, and
it is rather difficult to qualify these protocols without being harsh and impo-
lite. In short: it seems that the thought that the mere application of cryptog-
raphy would solve all problems prevented a clear formulation of the threats
for which the protocols should offer a solution. We acknowledge that these are
very strong claims. Nevertheless, they seem appropriate. Some examples:

• In [QBA+98a, QBA+98b] quality assesment of the protocols is performed,
quoting figures on sensitivity and specificity. This type of assesments im-
plies that privacy and validity (as defined in Section 2.7 and summarized
at the start of this section) are not considered for granted.

• In [QBA+98a, QAD00] the term “cryptology” is used where ‘cryptogra-
phy’ is supposedly intended.

• In [Ber04] a protocol is devised that should be “zero-knowledge” but it is
never explained what zero-knowledge actually means, nor contains the
paper any reference to a paper about zero-knowledge.

• In [CC04] it is stated that the use of a MAC can prevent a dictionary at-
tack. This is only the case when one assumes the principals who know

187

188 Appendix C. Remarks to Knowledge Authentication

the key to the MAC are essentially honest — this makes the whole excer-
cise of devising a secure protocol for computing set relations useless.

These publications sometimes use terms like “minimal knowledge”, which can
be considered a confession that some knowledge (other than the set sizes) is
leaked. It suggests that zero-knowledge is impossible.

C.2 On the Probabilistic Communication Complex-
ity of Set Intersection

(Referred to on page 118.)
In the context of sparse sets, it is appropriate to clarify an often misinter-

preted result by Kalyanasundaram, Schnitger and Razborov (from here on:
KSR) [KS92, Raz92]1. For example, in [FNP04] it is claimed that the result of
KSR implies that the lower bound for communication complexity of the se-
cure computation of set intersection is at least proportional in |n|. All men are
mortal ([KS92, Raz92]), therefore Socrates is mortal ([FNP04]), so it seems.

KSR show that the probabilistic communication complexity of disjointness
is Θ(n) (where n = |Ω|)2. This result applies to a problem which is more general
than the problems described in Chapter 8. In particular:

1. The result of KSR applies to the communication complexity of a problem,
and not to the communication complexity of a particular protocol. In par-
ticular, they assume the principals have unlimited computational power.
Thus, the efficiency property as mentioned at the start of Section 8.5 does
not apply to the computational resources, only to the communication re-
sources.

2. The problem analyzed by KSR does not include privacy or validity con-
cerns: the principals are implicitly assumed to be honest, and do not care
whether their ‘private’ information is disclosed. One could say the hon-
est adversary model is assumed.

3. The problem analyzed by KSR applies to the disjointness problem (in
terms of Figure 8.2: fdisj), and not to the intersection problem (fint). The
intersection problem is more difficult than the disjunction problem3.

1 The result is oringinally published by Kalyanasundaram and Schnitger in [KS92]. It has been
greatly simplified by Razborov [Raz92].

2 It is difficult to use consistent notation which is not misleading. As we have defined our domain
of set items to be Ω, we might as well write Θ(|Ω|), but Ω has also a meaning in complexity.
Therefore, we introduce n. We admit this notation is far from optimal.

3 If, for some X and Y one knows fint(X, Y), one can easily infer fdisj(X, Y). Observe that

fdisj(X, Y) =


1 if fint(X, Y) = ∅
0 if fint(X, Y) 6= ∅

The opposite is not the case: one cannot always infer fint(X, Y) from fdisj(X, Y).

C.3. Fuzzy Private Matching 189

4. In the problem analyzed by KSR, no assumptions are made on the set
sizes.

It is tempting to project these results to the problems described in Chapter 8.
As the result by KSR is more general, these results would, so it seems, also
apply to the problems analyzed in Chapter 8.

The generality of the result by KSR is misleading. The first three observa-
tions listed above seem to warrant a projection of the results of KSR to secure
computation of set relations. The fourth observation, that there is no assump-
tion on the set sizes, prevents projection of their results to secure computation
of set relations. With extra assumptions on the set sizes, it is possible to con-
struct protocols which are more efficient than the lower bound derived by KSR.
In particular, if the sets cover only a sparse fraction of the domain Ω, it is pos-
sible to devise protocols whose communication complexity is below |Ω|. And
in fact, the protocols presented in [FNP04] are an example of this.

It has to be admitted that [KS92] gives opportunities to misinterpret the
result. The abstract starts with:

“It is shown that, for inputs of length n, the probabilistic (bounded
error) communication complexity of set intersection is Θ(n).”

With “inputs of length n”, the authors tacitly mean ‘inputs of length n if encoded
in a specific manner, namely . . . ’. Moreover, where they write “set intersection”,
the authors actually mean ‘intersection cardinality > 0’, which is the dual of set
disjointness (see Figure 8.2 on page 110).

Therefore, the result of KSR does not imply that the lower bound for com-
munication complexity of the secure computation of set intersection is at least
proportional in |n|.

C.3 Fuzzy Private Matching

In [FNP04], on pages 16 and 17, a problem closely related to knowledge au-
thentication is presented: Private Fuzzy Matching. The problem is not only to
find exact matches, but also ‘close matches’, which they define well. The proto-
col they present on page [FNP04, page 17] is however incorrect. This problem
has been identified by Łukasz Chmielewski. In [CH06], a corrected protocol,
and other protocols for this problem are presented.

Appendix D

The T-1 protocol has a prototype implementation
as a Java application. It is explained how this

prototype is operated. The prototype allows one to
stress-test the T-1 protocol.

The Secret Prover
With use of the T-1 protocol, it is possible to prove possession of arbitrary se-
crets (Chapter 9). The ‘Secret Prover’ is a prototype implementation of the T-1
protocol. With it, people can prove possession of files, and explore how the pro-
tocol works. The Secret Prover is a Java application1, which can be downloaded
from http://www.teepe.com/phdthesis/demo . Java 1.4 or newer is re-
quired, which is available for Mac OS, Windows and many Unices, including
Linux.

In this appendix, we will talk you through the whole application, in such a
way that you can run the protocol yourself. No deep understanding of the T-1
protocol is required. Running the protocol hands-on, with some help from the
screenshots printed in this chapter, may even help to gain some basic under-
standing of the T-1 protocol.

The Secret Prover has the following features:

• Execution of all three configurations of the protocol (the verifier initiates,
the prover initiates, mutual proof).

• Support for the following hash algorithms: MD5, SHA-1, SHA-256, SHA-
384 and SHA-512.2

• Support for using a nonce, or encryption. The following encryption algo-
rithms are supported: DES, Triple DES, Blowfish.

• The transport mechanisms used is TCP/IP. (i.e., it works over the inter-
net.)

• There is no authentication of the identity of the principals in the protocol.
The authenticity of the communication channel is also not guaranteed.

1 The current version number is 0.03.
2 For SHA-256, SHA-384 and SHA-512, Java 1.5 is required. If one side of the protocol tries to use

one of these hash algorithms, while it is not supported at the other side of the protocol, this is
detected and a warning is given.

191

http://www.teepe.com/phdthesis/demo

192 Appendix D. The Secret Prover

• Multiple proof messages can be sent per protocol.3

• Protocols can be interleaved.

• It is possible to perform ‘fake’ actions in the protocol.

• It is possible to trim down (‘mutilate’) hash values to a few bits, to simu-
late the effect of hash collisions on the protocol.

If you want to run the prototype yourself and experiment with it, you
should read on from here. If on the other hand you only want so look how
it works, without running anything yourself, you may skip Section D.1, and if
you are very impatient, you might skip Section D.2 as well.

D.1 Starting Up and Connection Control

Once you have downloaded the application file you can start it up. On Unix-
like operating systems, this is done by typing
java -jar Prover.jar &
at the console. In more graphical environments, like Mac OS X, the file can
simply be ‘double-clicked’. Once the application has launched, you will see
appear the main application window (Figure D.1).

FIGURE D.1:
Main application window.

The main application window consists of four
parts, from top to bottom:

A menu bar From here you can stop the applica-
tion or open the splash screen.

Hash pools This is where pre-computed hash
values are stored, it will be described in
Section D.2.

Listening server ports Here all connection lis-
teners are managed. When you open a con-
nection listener, someone can contact you
by opening a connection to the specified
host and port.

Connections Here all connections are managed.
You may contact somebody, and the con-
nection will be displayed here. Also, if you
have a connection listener open, if some-
body contacts you through the listener, the
connection will show up here.

3 This is a slight generalization of the T-1 protocol. In the T-1 protocol, if the prover is also the
initiator, he can only send one single h2 value. In the prototype, an initiating prover may send
multiple h2 values. This generalization has been implemented to ease the process of experi-
menting with the protocol.

D.1. Starting Up and Connection Control 193

FIGURE D.2: Opening a connection listener. FIGURE D.3: Filling in a name.

D.1.1 Opening a Connection Listener

The TCP/IP protocol works using ‘meeting places’. A meeting place is a com-
bination of a computer (a host, an IP address) and a port (a number). The
owner of a computer may set up a meeting place by listening at the spot of the
number. Anybody else contacting the host at the port will get connected. For
any connection, one of the participants has to set up such a ‘meeting place’.

By clicking on ‘Add’ in the ‘Listening server ports’ pane of the main appli-
cation window (Figure D.1), you can set up such a meeting place. The host is
already set to reflect your computer’s IP address, but you do have to provide a
port number and a name (Figure D.2). The port number is set to a reasonable
default, but you really should fill in the name field. This name is not essential
to setting up a connection, but it will be used in the protocols later on.

Throughout the examples I will use the name ‘Wouter’ (Figure D.3). Later
on in the example, a second player will be introduced, and for the second
player I will use the name ‘Kathy’. In the text I will sometimes refer to Kathy or
Wouter. Obviously, you are free to use other names. You should however take
note which of the names you use correspond to the roles of Kathy and Wouter,
because it may help you to understand the explanation.

If the port for some technical reason or another cannot be used as a meeting
place, you will be informed so, and in that case you should use another port
number and try again.

Now you may by whatever means you see fit inform somebody else to con-
tact you at the specified host and port. The host is the name or IP address of
your computer. For your convenience, this is displayed in the ‘Listening server
ports’ pane of the main application window. The port number is the number
you just specified.

Instruct some friend or colleague to run the software as well. The best and
most convincing way to see how it works is to run the protocol with somebody
else. However, if you lack somebody to play the game with, or don’t want to
bother anybody, you may connect yourself to the server and the port. That is
what we’re going to do in the next section.

D.1.2 Making a Connection

By clicking ‘Add’ in the ‘Connections’ pane of the main application window
(Figure D.1), you get the ‘connection’ window shown in Figure D.4. Since

194 Appendix D. The Secret Prover

FIGURE D.4:
Making a
connection.

FIGURE D.5:
Filling in
connection details.

FIGURE D.6:
An initiated connection (outgoing).

we are connecting to ourselves, we should distinguish between our own two
‘egos’. A good way to easily distinguish these is to put all windows concerning
ego #1 (Wouter) on the left hand side of the screen, and all windows concerning
ego #2 (Kathy) of the right hand side of the screen. (Now drag the connection
window to the right hand side of your screen.)

In the top of the connection window, you see the ‘local side’ pane: this is
about who you (the connecting side) are. Choose some name for your ego #2
and fill it in. Below that, you see the ‘remote side pane’: this is what meeting
place (host and port) you are connecting to, and who you expect to find there
(Figure D.5). If you leave empty the host field, it will connect to the local com-
puter. (And we have just opened a listener on the local computer on port 4444,
so this will all work out.) As soon as you click ‘Connect’, the software will try
and make the connection for you. The window will ‘grow’ and transform into
the window shown in Figure D.6.

When you have done this, you will see that some more windows have
popped up. Most importantly, a window has popped up that belongs to the
listening port (Figure D.7). If you would not have connected to yourself, but to
somebody on another host (i.e., another computer), the window would have
come up there.

Also, two ‘authentication’ windows have popped up (Figure D.8), which in-
form both sides of the connection that some authentication should take place.4

You may click on ‘OK’ to close the authentication windows.
Of course, it may happen that the person responding on the meeting place

is not the person you expected to meet there. In that case an ‘authentication
mismatch’ warning is given (Figure D.9).5

4 The T-1 protocol requires an authenticated communication channel. We haven’t implemented
this authentication, because it would complicate the setup process even more, while the authen-
tication is not essential for demonstrating the protocol. Of course, the authentication is essential
in the sense that without it, anybody can claim to be anybody else, which is clearly undesirable.
Any production implementation should obviously include authentication of the players and of
the communication channel.

5 Since no real authentication is done in this prototype, this warning is mainly cosmetic.

D.1. Starting Up and Connection Control 195

FIGURE D.7:
Receiving a connection (incoming).

FIGURE D.8:
An authentication warning.

FIGURE D.9:
An authentication mismatch.

FIGURE D.10:
Main application window,
with connections.

If all has gone well, the main application win-
dow will look like Figure D.10:

Listening server ports In this pane a line has ap-
peared which informs you the port is lis-
tening for new connections. You may se-
lect ports and remove/close them using the
buttons in the pane.

Connections In this pane, the two sides of the
connection are shown. If you would be
connecting to somebody on another host,
only one line would have shown up. If
you click the ‘View’ button, the window
containing the connection details will be
shown (either Figure D.6 or D.7).6

Congratulations! you have passed the ‘bor-
ing’ part of the prototype! In the next section, we
will pre-compute hash values, and store them in
hash pools.

6 The details shown in the connections pane are as follows:

• The columns ‘local name’, ‘remote name’ and ‘remote host’ are pretty self-explanatory.

• The column ‘in’ shows whether it is an incoming connection (you have set up a lis-
tener/meeting place and somebody went there), or whether it is an outgoing connection
(you went to a meeting place that somebody else has set up). Checked means it is an incom-
ing connection, unchecked means it is an outgoing connection.

• The column ‘up’ is checked if the connection is up, that is, it has not been terminated in some
way or another.

196 Appendix D. The Secret Prover

FIGURE D.11:
A new hash pool
window.

FIGURE D.12:
Adding files to a hash
pool.

FIGURE D.13:
A hash pool with files
added.

D.2 Managing Hash Pools

The protocol uses a hash value (h1) to refer to the file of which knowledge is to
be proven. When you initiate the protocol, you can compute the hash value as
easy as that. If, however, you are on the responding side of the protocol, you
have to find out what file the hash value h1 refers to. That is what hash pools
are for. A hash pool is a collection of precomputed mappings from hash value
to file and vice versa.

A hash pool has some settings, which determine the exact way the hashes
are computed from the files. These settings are:

Algorithm The hash algorithm used to compute the hash. Currently MD5,
SHA-1, SHA-256, SHA-384 and SHA-512 are available.

Mutilation All hash algorithms generate a value of a certain number of bits.
If we want to stress-test the protocol for what happens if we have (for
example) collisions, we can easily enforce collisions by trimming down
the hash values to a limited number of bits.

Obviously, in any production environment, you don’t want to mutilate
your hash values.

Nonce If the protocol uses a nonce (and thus no encryption), a nonce must
be used in the process of computing the hash values. In the prototype,
nonces are 64 bits long, but they could be of any sufficiently large size.

D.2. Managing Hash Pools 197

FIGURE D.14:
Computation of hash
values.

FIGURE D.15:
A ready hash pool.

FIGURE D.16:
Adding files to an
existing hash pool.

To create a hash pool from scratch, press the ‘Add’ button in the ‘hash pools’
pane of the main application window (Figures D.1 and D.10). It will display a
window in which the described settings can be set (Figure D.11).

Next to some settings, a hash pool obviously has a file list. Using the ‘Add’
button, files can be selected for inclusion in the hash pool (Figure D.12). You
can also add directories. In that case, the program will recursively add all
files in the directory (Figure D.13). Only after pressing the ‘Run’ button, the
computation of the hash values starts (Figure D.14). Depending on the total
volume of the files, this may take some time. A progress bar will give you a
precise approximation of the progress.

After having done the precomputations, the hash pool window (Figure
D.15) serves two main purposes:

1. Displaying the list of added files and directories;

2. Allowing you to add more files and directories to the hash pool.

The first purpose is obvious, the second almost as much. After pressing
‘Add files’ in a hash pool window which has finished computing, it will pop
up a new window in which all settings are adopted from the existing hash pool,
and you can add new files (Figure D.16). After pressing ‘Run’, the additional
precomputations will be performed and the files will be added to the hash pool.
Any protocols bound to this hash pool will be updated automatically.

If you run the protocol, you may indeed use the ‘Add files’ function quite a
lot. That will be described in the Section D.3.3.

198 Appendix D. The Secret Prover

D.3 Running the Protocol

There are three configurations of the T-1 protocol, and for each of the configura-
tions, a protocol with and a protocol without encryption exists. As an initiator
of the protocol, one can choose to use encryption or use a nonce (two mutu-
ally exclusive options), and one can choose whether the initiator only proves,
both proves and verifies, or only verifies (three mutually exclusive options).
The combination of these choices gives a total of six possible protocols. All six
blends of the protocol can be performed with the prototype.

When running a protocol, one has to keep track of several properties of
the protocol, such as the file the protocol is about, what hash function is used,
what nonce is used, and so on. All protocol windows display this information.
When one initiates a protocol, one can also manipulate these attributes. There-
fore, before explaining all protocol actions, we will briefly describe all protocol
properties, and how they are shown in the protocol window.

In a protocol window, one can see from top to bottom the following things:

chat session The full communication history of the protocol. This displays
exactly what bytes are sent along the TCP/IP connection regarding the
current protocol run. Messages sent by you are prepended with ‘SEND:’,
and messages sent by the remote side (the person you’re communicating
with) are prepended with ‘RECEIVE:’, for clarity.

Protocol configuration Here the security settings of the protocol are set or dis-
played. It is a superset of the options of a hash pool.

If you initiate the protocol, this is where you choose to either use a nonce,
or use encryption. If you choose to use a nonce, you must give one, and if
you choose to use encryption, you must choose an encryption algorithm
and a key.

If you are not the initiator, this is where you must fill in either the nonce
or the key, depending on the protocol type the initiator has chosen.

Your role Whether you are to prove, you are to verify or to prove and verify.
As an initiator, you can set this parameter.

The big fingerprint/subject Here the subject of the protocol is identified. That
is: the initiator chooses a file, h1 will be computed. The initiator will see
both the file name and h1, the responder will only see h1.

Here is also an option to ‘fake’, this will be explained later on. For now,
you may ignore this option.

A button A multi purpose button. Its purpose depends on the state the proto-
col is in. While the protocol is being set up, the initiator of the protocol
can fire up the protocol by pressing ‘Initiate’, upon which the communi-
cation will commence.

D.3. Running the Protocol 199

FIGURE D.17:
A new protocol
window for the
initiator.

FIGURE D.18:
A protocol window,
configured by the
initiator.

FIGURE D.19:
A protocol window of the
initiator for a protocol that has
started.

The responder on the other hand, will see ‘Commit ...’ when the protocol
has just started. Pressing the button, the responder can confirm the nonce
or key he has entered.

After this, both sides will see here ‘View hash pool’. Each protocol run
has an associated hash pool, which can be inspected and extended using
this button. It will display the corresponding hash pool window.

The association between hash pool and protocol run is not exclusive: one
hash pool may be bound to more than one protocol run.

All these options may seem somewhat dazzling, but that will wear away
quickly. In the next section, hopefully most questions will vanish.

D.3.1 Initiating a Protocol

Remember, we had set up a connection from Kathy to Wouter. We also had
made a hash pool with the MD5 algorithm and the nonce 72365F9890F87665.
Kathy (e.g. you) may now press the ‘Add’ button in the connection window
(Figure D.7), and in the window that pops up (Figure D.17) select the hash
algorithm, state that she wants to use a nonce, fill in the nonce, say she wants
to prove (only), and use the ‘Browse’ button to select a file (it will look like
Figure D.18).

Finally she presses ‘Initiate’ and the protocol is fired up. Along firing up
the protocol, the window is enlarged (Figure D.19). Don’t worry, we’ll explain
what you’ll see in the added part later on, in step 3.3.

In case the responding side does not know or support the chosen hash and
encryption algorithms, you will be informed so and may choose to try again
using other algorithms. (Java 1.4 only supports MD5 and SHA-1, Java 1.5 also
supports SHA-256, SHA-384 and SHA-512).

200 Appendix D. The Secret Prover

FIGURE D.20:
A new protocol
window for the
responder.

FIGURE D.21:
The responder has
filled in the nonce.

FIGURE D.22:
The responder has committed the
nonce.

D.3.2 Responding to a Protocol

Okay, Kathy has just initiated a protocol to Wouter. This has the result that
at Wouter’s side, a window has popped (Figure D.20). All protocol attributes
are shown, except a crucial part. This crucial part is the nonce, if a nonce is
used, and if encryption is used, the key. The responder should provide this
information.

When a nonce is used, the nonce influences which hash pool is used. Fill-
ing in the wrong nonce will result in not finding the file corresponding to the
received hash value.

When encryption is used, filling in the wrong key will result in not being
able to decrypt the received hash value. This will be detected, and you will be
prompted to try another key instead.

For now, Wouter should somehow know the nonce 72365F9890F87665 and
fill it in (Figure D.21), and commit it. After committing, the window is enlarged
(Figure D.22), similarly to the enlargement on the initiator’s side.

D.3.3 A Side Note on Hash Pools

After initiating a protocol or committing the key or nonce to a protocol, the
prototype automatically finds out what hash pool settings should be used for
the current protocol. If such a hash pool already exists, it will take it. If such a
hash pool does not yet exist, it will create it on the fly, with no files added yet.

Then, for the initiator, the hash value of the chosen file is computed and
added to the hash pool, or looked up if it already was in the hash pool.

Strictly spoken, the initiator does not need a hash pool, only the responder
does. There may however be situations in which it is desirable for the initiator
to maintain a hash pool as well. (For example, if the initiator will be a respon-
der in another protocol run, keeping a hash pool will save him computations.)

D.3. Running the Protocol 201

The responder will use the hash pool to try to figure out what file the ini-
tiator is talking about. If the responder already has done precomputations (i.e.,
created the hash pool and filled it with files), this will be inferred automagi-
cally. The responder may however always, during execution of the protocol,
add files to the hash pool. This means that if the initiator has not done any
precomputations, he is free to do these computations right on the spot, while
the protocol has already started.

D.3.4 Challenging

There is another side note to make before we get to making a challenge. The
screenshots and explanations you see and read here investigate the case where
the initiator is the proving side, and the responder is the verifying side. If the
initiator has chosen another option in the ‘role’ field (Figure D.17), this would
all be different. From here on we talk about provers and verifiers. It is just a
mere coincidence that the prover also is the initiator, and nothing more.

Now, Wouter should verify Kathy’s possession of the file, so he should go
and do this. First step would be to look in the hash pool for a matching file, and
if no file was found, Wouter could try and add more files to the hash pool to see
whether he finds the matching file. In case of this example, we have already
done precomputations, and so Wouter has an educated guess which file it is.

To verify Kathy’s possession of the file, Wouter has to challenge Kathy. By
pressing ‘Compute’ (Figure D.22), a challenge will be generated such that it
discriminates within I?. In fact, this is just making up some random challenge
and test that it does indeed discriminate within I?, if it doesn’t, it just tries
again with another random challenge.7

You may also choose the challenge yourself. In that case check the ‘Specific’
box, and fill in a challenge (Figure D.22). Then press ‘Compute’. This option
should not be used in production environments. It allows to test and verify
that nobody can perform a man-in-the-middle attack.

Currently, all challenges are 64 bits long. This is not due to any limitation
in the protocol, but just because we wanted to limit the number of options to
the user. (There are enough options to choose from already.) The size of the
challenge should be big enough to make it infeasible for an adversary to try all
possible challenges.

You may remember from Chapter 9, that if the verifier is also the responder,
he may also halt the protocol. This should typically be done when the respon-
der has no matching file or does not wish to prove possession of the matching
file. Therefore, you see that there actually is the choice to either challenge, or to
halt. To confirm the choice, press ‘Do it’ (Figure D.23). After this confirmation
the other side will be informed accordingly. For demonstration purposes, let
Wouter actually challenge Kathy, and press ‘Do it’ (it will look like Figure D.24).

7 Little exercise: Imagine what would happen if we would have thousands of files in our hash
pool and would be trimming our hash values to only 3 bits.

202 Appendix D. The Secret Prover

FIGURE D.23: The verifier chooses whether he will halt the protocol. For the
chosen challenge, the required hash value h2 has been computed.

FIGURE D.24: The verifier has challenged the prover.

FIGURE D.25: The prover has received a challenge. With this challenge, the
required hash value h2 has been computed.

D.3. Running the Protocol 203

FIGURE D.26: The prover sends some fake hash value h2.

FIGURE D.27: The prover sends a genuine hash value h2.

D.3.5 Proving

When the prover has received a challenge, the main protocol window (which
looked like Figure D.19), will have the challenge filled in, and the value h2

computed (Figure D.25).
The prover may send any number of h2 hash values, and should then in-

form the verifier that no more hash values will be sent.
The h2 hash values the prover sends would in an optimal case always be

truthful. However, we want to demonstrate that sending untruthful h2 hash
values will not result in the verifier becoming convinced. Therefore, the prover
has two options for sending a h2 hash value:

1. Just make up some untruthful h2 hash value, and send it. To do this, the
prover presses the ‘add fake’ button, which will add a fake file to I? with
a random h2 hash value. This ‘hash value’ may be edited. After this,
select the fake file and press ‘prove’ (Figure D.26).

2. Choose a matching file from I?, and sent the corresponding hash value
h2 (is has already been computed). To do this, the prover selects one or
more files from the list, and presses the ‘prove’ button (Figure D.27).

When the prover has performed actions as he sees fit, he can inform the
verifier that he is finished. This is done by pressing the ‘finish’ button (it will
look like Figure D.28).

204 Appendix D. The Secret Prover

FIGURE D.28: The prover hash halted the protocol (no more proofs will fol-
low).

D.3.6 Verifying

After the verifier has challenged the prover, he is left with the task of the actual
verification of the h2 messages sent by the prover.

The prover can send a number of h2 hash values, and then inform that no
more h2 hash values will follow. Each incoming h2 hash value is looked up in
the set I?. If there is no matching file, there are two possible interpretations:

1. The prover has a file which gives the same h1 hash value as the file the
verifier has. This is increasingly unlikely as the hash size gets bigger.
With a hash size of 128 bits, this is negligibly unlikely. (Assumed that the
used hash function is a sufficiently good one.)

2. The prover has just made up some h2 hash value.

Since the first option is so unlikely, if a hash value h2 is received with no
matching file in I?, it will be marked as ‘faked’ (Figure D.29).

If a matching file is found, this file will be marked as ‘proven’, and this will
be shown to the verifier (Figure D.30).

Finally, when the prover informs the verifier that he is finished, the verifier
can finalize his interpretation of the received hashes. If the file was marked
as ‘proven’, the prover both possessed the file and wanted to prove it to the

D.3. Running the Protocol 205

FIGURE D.29: The verifier receives an unexpected value of h2. It is marked as
‘fake’.

FIGURE D.30: The verifier receives the h2 he expected. The corresponding file
is marked as ‘proven’.

FIGURE D.31: The verifier has been informed that the prover has halted the
protocol. (No more proofs will follow)

206 Appendix D. The Secret Prover

verifier. If no such mark has been made, the prover either did not possess the
file, or did possess the file but did now want to prove this to the verifier.

D.3.7 Faking

The prototype can demonstrate that the T-1 protocol is secure in the malicious
adversary model. The prototype facilitates all kinds of malicious behavior:

h1 The initial hash value h1 can be set manually. In the initialization of the
protocol (Section D.3.1), instead of selecting a specific file to run the pro-
tocol with, one can choose ‘Fake’, and fill in the h1 value directly. The
button ‘Randomize’ is at ones disposal to help you make up some ran-
dom value for h1.8

C The challenge the verifier sends to the prover, should be made up at
random, which is what the prototype can do. However, a malicious
player may want to challenge in a specific way. While challenging (Sec-
tion D.3.4), one can check the ‘Specific’ box, in which case the malicious
player can fill in the challenge he wants to use.9

h2 The response h2 hash value the prover sends, can also be faked. This has
been demonstrated in Sections D.3.5 and D.3.6.

Using these features, a malicious adversary can perform actions which are
syntactically correct, but not intended. This kind of actions will never result
in a non-malicious player being misled. That is, a non-malicious player will
never be sneaked into believing that a malicious player possesses a file while
he does not possess the file.

D.4 Closing

After having played around, a moment in time might arrive in which a user of
the prototype decides to temporarily stop playing around with the software.
Specifically for those users, the ‘Exit’ action is implemented. It is found in the
‘File’ menu of the main application window.

Exiting the program will result in all information in the hash pools being
lost. If at a later moment one wants to rerun the protocols, one will need to
rebuild the hash pools from scratch.

In case one only wants to stop communicating with some other player, one
can disconnect the other player by pressing the ‘Disconnect’ button in the con-
nection window (Figure D.7). All non-terminated protocols using the connec-
tion will obviously stop.

8 Using this feature, one can try to claim possession of a file which one does not have. The
protocol will however never let you successfully prove you do indeed possess the claimed file.

9 Using this function, the malicious player might try to perform a man-in-the-middle attack. He
will not succeed, because he will need to present a hash value h2 with the given challenge and
also a name, and such a hash will never be computed by another trustworthy user.

Appendix E

Notation

E.1 Symbols

|∼ once conveyed (GNY logic, BAN logic)
|− derivable within a logic
|= observable within a model
|≡ believes (GNY logic, BAN logic)
·7→ public key (GNY logic, BAN logic)
·↔ shared secret (GNY logic, BAN logic)

](·) fresh (GNY logic, BAN logic)
φ(·) recognizable (GNY logic)
∗ not-originated-here (GNY logic)
C is told (GNY logic, BAN logic)
3 possesses (GNY logic)
� combining function

(used in the randomize-then-combine paradigm)
⊕ bitwise exclusive or
| · | the cardinality (number of elements) of a set
{·} a set
{·}· encryption;

{M}K denotes the message M encrypted under symmetric key K;
{M}+K denotes the message M encrypted under public key +K;
{M}−K denotes the message M signed under private key −K

207

208 Appendix E. Notation

E.2 Letters

Ω the domain of all possible secrets
Φ the compressed domain of all possible secrets (Section 8.6)
A the principal Alice
B the set of beliefs (|≡) of a principal (BAN logic)
B the principal Bob
c a constant factor in a formula
C either:

• the principal Cecil (trustworthy) or Charlie (untrustworthy)
• a challenge (a message or bit string constructed for the sake of

being unpredictable)

D a designator
E the principal Eve (the evil eavesdropper)
ε the empty string
ε an error margin
f(·) a compression function (used in the Merkle-Damgård paradigm)
g(·) a randomizing function (used in the randomize-then-combine par-

adigm)
h a hash value; in the T-1 and T-2 protocols:

h1 is the hash value that ‘points at’ a secret
h2 is the hash value that ‘proves possession of’ a secret

H(·) a non-keyed cryptographic hash function
I a specific secret; IQ is a secret of principal Q (IQ ∈ KBQ)
I? a set of specific secrets;

IQ? = {IQ ∈ KBQ|H(IQ, N) = h1}; or
IQ? = {IQ ∈ KBQ|H(IQ) = h1}

k a security parameter (a measure of the strength of a cryptographic
function)

K a symmetric key
−K a private key (the corresponding public key is +K);

−KA denotes the private key of A (etc.)
+K a public key (the corresponding private key is −K);

+KA denotes the public key of A (etc.)
KB a set of IB’s possessed by an principal;

KBA denotes the set of IB’s of A (etc.)
l the length of a bit string
ln the logarithm (with base 2)
M a message
M the set of messages seen (C) by a principal (BAN logic)
MAC (·, ·) a keyed cryptographic hash function (also called message authenti-

cation code, or MAC);
MAC (K, M) denotes message M hashed under key K

N a nonce (a message constructed for the sake of being fresh)
p a prefix of a hash value

E.2. Letters 209

p1 is the prefix of h1

p2 is the prefix of h2

P the principal Peggy (the prover)
P(·) the power set, the set of all possible subsets;

<∞
P is the set of all possible finite subsets;

<∞
P ({0, 1}∗) is the set of all possible finite sets of finite bit strings

Q a principal which may be either Alice, Bob, Cecil, Eve, Peggy or
Victor

s a global state in a protocol run; sQ is a local state of principal Q
(BAN logic)

S either:

• a secret (either private or shared) (GNY logic)
• a set of binary strings (used in the T-2 protocol)

t a timestamp or time interval (see Section 7.4)
V the principal Victor (the verifier)

