
Chapter 10

The T-2 protocol, our solution for many-to-many
knowledge authentication, is presented. It is a

parallel composition of the T-1 protocol. It relies
on prefix trees made from hash values to optimize

communication complexity. The average-case
communication complexity is experimentally

estimated.

Many-to-many Protocols
(T-2)

In the previous chapter, we presented our T-1 protocol, which is a solution for
‘comparing information without leaking it’ in the 1-to-many case. That is the
case where one principal has only one secret in mind, and the other player
any number of secrets. The T-1 protocol can be generalized to the many-to-
many case: the case where two principals each have a large number of secrets
and wish to determine the intersection of their secrets. In this chapter, we will
present and explain our generalization, the T-2 protocol.1

The T-2 protocol offers the same security guarantees as the T-1 protocol, be-
cause the T-2 protocol can be seen as a group of parallel runs of the T-1 protocol,
and the T-1 protocol is secure under parallel composition. The T-2 protocol is,
for cooperative principals, very efficient in terms of communication complex-
ity and computational complexity.

Moreover, the T-2 protocol offers fairness: the players can make sure that
they only prove possession of secrets for which they receive a reciprocal proof
in return.

10.1 Using Prefix Trees for Efficiency

The T-2 protocol heavily relies on prefixes and prefix trees. To grasp the work-
ing of the protocol, it is important to understand some properties of prefix
trees, and how this relates to set intersection. This section will offer the neces-
sary background on this subject.

1 Discussions with Sieuwert van Otterloo have been of critical value for the work that is reported
in this chapter. The results reported up to and including Section 10.3 are joint work.

145

146 Chapter 10. Many-to-many Protocols (T-2)

Ω KBA KBB KBA ∩KBB

q q q q q q q q q q q q q q q q
0 0 0 0 0 0 0 0
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1 1 1 1 1 1 1 1
E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

q q q q q q q q0 0 0 0�
�

�
�

�
�

�
�

1 1 1 1B
B

B
B

B
B

B
B

q q q q0 0

1 1J
J

J
J

q q0�
��

1Z
ZZ
q

qEE
1

qEE
1

q��
0

q q q0�
�

1 1B
B

B
B

q q 0

1J
J
q q0�

��
1Z

ZZ
q

qEE
1

q��
0

qEE
1

qEE
1

q��0 qBB 1 q��0q q q0 0

1J
J

q q0�
��

1Z
ZZ
q

q��
0

qBB 1

q

0q q0�
��

1Z
ZZ
q

0000, 0001, 0010, 0011,
0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011,
1100, 1101, 1110, 1111

0111, 1001, 1010 0001, 1010, 1011, 1101 1010

FIGURE 10.1: Sets KBA, KBA represented as binary hash value prefix trees. In
this toy example, the length of the hash value is 4 bits. Leaf nodes at depth
4 represent full hash values. The prefix trees of the full domain Ω and the
intersection KBA ∩ KBB are also shown. Below every prefix tree, the list of
hash values in the tree is shown.

Consider two principals, Alice and Bob, with knowledge bases KBA and
KBB . A simple way to generalize the T-1 protocol to the many-to-many case,
is to repeat the protocol |KBA| times: in every run of the T-1 protocol, another
single secret of Alice is compared with all Bob’s secrets. For every secret of
Alice, l bits (where l is the length of the hash value, a security parameter) have
to be exchanged. A typical message would be: ‘Bob, do you have the secret
with hash 1ab1dabb2c90231e3182b15ffcacd732?’2 It turns out that if a
specific secret of Alice is not a secret of Bob, the communication of l bits is
largely a waste of communication capacity.

In the T-1 protocol, one player ‘points at a secret’, by sending a message
of the form ask(h1). The T-2 protocol differs from the T-1 protocol in that the
process of pointing at secrets is performed interactively and iteratively by both
principals. Instead of pointing at a secret by presenting a bit string of length k,
very short bit strings are presented. A typical message would be: ‘Bob, do you
happen to have any secrets with hash prefix 1a?’3 Both Alice and Bob may in
fact have many secrets with this hash prefix. If it is the case that Bob does not
have any secret with hash prefix 1a, he can say so to Alice: ‘Alice, I do not have
any secrets with hash prefix 1a!’4 As a result of such ‘refusal’ message, Alice
knows that stating the full hash values which start with 1a is a waste of time.

The hash values of a set of secrets can be represented in a binary prefix tree.
Figure 10.1 shows the binary prefix trees for the toy example where the length
of the hash value is four bits, Alice has three secrets, and Bob has four secrets.

The way that the T-2 protocol optimizes the communication complexity is

2 Technically, the message that is exchanged is ‘ask(1ab1dabb2c90231e3182b15ffcacd732)’.
3 Technically, the message that is exchanged is ‘ask(1a)’.
4 Technically, the message that is exchanged is ‘refuse(1a)’.

10.1. Using Prefix Trees for Efficiency 147

encoding of the prefix tree
depth 1 2 3 4 encoding

tree 01 0101 01010101 0101010101010101 size (bits)
Ω 11 1111 11111111 1111111111111111 30

KBA 11 0110 0111 010110 16
KBB 11 1011 10 0110 01 1101 18

KBA ∩KBB 11 0010 01 10 10

TABLE 10.1: Binary encoding of some hash prefix trees. The depth corresponds
to the depth of the corresponding tree (see Figure 10.1). The two bits at depth
1 signify the two possible branches at depth 1, the four bits at depth 2 signify
the possible two branches at depth 2, and so on. Whitespace is inserted in the
encodings to align the bits of the encoding with the table header.

by constructing (almost) precisely the prefix tree that belongs to the set KBA ∩
KBB (an intersection prefix tree). The efficiency of a protocol that does just this
depends on the size of an intersection prefix tree (counted in nodes), and on
the way an intersection prefix tree is encoded. Determining the expected size
of an intersection prefix tree is far from trivial, and we will devote Section 10.4
to this.

Creating an efficient encoding scheme for a binary tree (without labels) is
relatively simple: A binary tree can be represented in (1 + 2 · #nodes) bits.
One bit is used to encode whether the root node exists. Then, for every ex-
isting node, two bits are used: one bit for each of the two branches that may
spring from it. The bit is 0 if there is no such branch, and 1 if there is such
a branch. There are a few options to order the bits; we choose for ‘breadth-
first’ order: that is the order in which a breadth-first search algorithm would
visit the nodes.5 The binary strings that stem from this encoding scheme are
self-delimiting.

The binary hash prefix trees we use are a specific subset of all possible bi-
nary trees, because the depth of the binary hash prefix trees is bounded by
the size l of the hash values. This means that binary hash prefix trees can be
encoded even more efficiently: the nodes that are at depth l cannot have any
branches springing from it.6 Therefore nodes at depth l need zero bits for their
encoding. Also, when we assume that binary hash prefix trees are nonempty,
we can omit the bit for the root node. Using this coding scheme, a binary hash
prefix tree with maximum depth l can be encoded in this number of bits:

2 · (#nodes−#nodes at depth l)

Table 10.1 illustrates our binary hash prefix tree coding scheme for the sets
given in Figure 10.1.

5 This is sometimes called ‘level-order traversal’.
6 We adhere to the convention that we consider the root node of a tree to be at depth 0.

148 Chapter 10. Many-to-many Protocols (T-2)

message meaning
ask(p1) A principal asks the other player to look whether he has

any secrets which have a hash value that starts with p1

refuse(p1) A principal tells the other player he will not prove pos-
session of any secrets whose hash value starts with p1

challenge(h1, C) A principal asks the other player to prove possession of
a secret with hash value h1, using the challenge C

prove(h1, p2) A principal partially proves possession of a secret,
identified by h1, by presenting the prefix p2.

TABLE 10.2: Basic messages used in the T-2 protocol. The prefixes can be of
any length between 0 and l (where l is the length of the hash value, a security
parameter).

10.2 Specification of the T-2 Protocol

The prerequisites of the T-2 protocol are the same as the prerequisites of the T-1
protocol, given in Section 9.1. Here, we will mainly describe the parts of the
T-2 protocol that differ from the T-1 protocol.

The T-2 protocol is a protocol for two principals, which we will call
Alice (A) and Bob (B). They have their respective knowledge bases KBA and
KBB . They want to determine the intersection KBA ∩ KBB without leaking
any information on the items outside of the intersection KBA ∩KBB . Here we
assume Alice and Bob want to mutually prove possession of the items in the
intersection KBA ∩ KBB , but the protocol can easily be adjusted to allow for
a unidirectional proof. Also, we adopt the setting that A and B have estab-
lished a shared secret nonce N , and that no encryption is used. The protocol
can easily be adjusted to encryption instead of a nonce.

Both players know one another’s names, A and B. They have established
a common shared secret nonce N , and computed the hash H(IQ, N) for each
IQ ∈ KBQ. The length of the hash values used in the protocol is l bits. These
hash values are stored in a binary prefix tree, with the corresponding files at
the leaf nodes. Since hash values have an equal length, all leaf nodes in the
prefix tree are at depth l.

The basic messages that are exchanged in the T-2 protocol are listed in Ta-
ble 10.2.7 Note that sending a message of the form refuse(p1) is an explicit
refusal: the principal that sends this message states that he does not have any

7 It is easy to see that the basic messages of the T-1 protocol are special cases of these messages:

• ask(h1) is a special case of ask(p1) where the length of p1 is equal to l.
• halt is a special case refuse(p1) where the p1 is of zero length.
• challenge(C) is s special case of challenge(h1, C) where h1 is equal to the h1 of the

previously sent ask(h1) message.
• prove(h2) is a special case of prove(h1, p2) where h1 is equal to the h1 of the previously

sent ask(h1) message and the length p2 is equal to l.

10.2. Specification of the T-2 Protocol 149

secrets with hash prefix p1 of which he is willing to prove possession in this
protocol run. Conversely, sending a message of the form ask(p1) is not an ex-
plicit confirmation: the principal that sends this message may have not a single
secret with hash prefix p1 of which is he willing to prove possession in the cur-
rent protocol run.

One might think that sending a message of the form ask(p1) should be an ex-
plicit confirmation, but this is neither necessary nor sensible. It is not necessary
because the only convincing confirmation is a prove(h1, p2) message where p2

meets certain criteria. It is not sensible because one cannot verify whether the
player sending the ask(p1) message actually has a message with hash prefix p1.

A run of the T-2 protocol consists of many subprotocols. There are two
types of subprotocols: one for determining the approximation KBAB? of the
intersection KBA ∩KBB (described in Section 10.2.1), and one for performing
the mutual proof of possession of the elements in the intersection KBA ∩KBB

(described in Section 10.2.2).
In the text, ε, p, pQ, h, hn and s denote binary strings, and · denotes string

concatenation. The empty string is denoted as ε. When applied to numbers, ·
denotes multiplication. The length (in bits) of the hash values is l, which is the
same for all hash values. The length (in bits) of the challenges is lc, which is the
same for all challenges.

10.2.1 Subprotocol for Determining Intersection

The subprotocol for determining the approximation KBAB? of the intersection
of KBA and KBB takes a recursive divide-and-conquer approach. By means
of messages, the domain of possible mutually owned files is divided into a
number of smaller domains, and for each of these domains a new ‘subprotocol’
is started. By means of recursion, these domains get smaller, and eventually
the players either state that they do not have files within the domain, or the
domain contains only a single file. In the latter case, a subprotocol for proving
possession is started (described in Section 10.2.2).

A subprotocol is started by a player sending an ask message, which is typ-
ically ask(ε). When a player (let us say Alice) sends a message ask(p) with
length(p) < l, the other player (let us say Bob) is obliged to respond with a set
of messages Rp such that Bob gives a full account of the domain denoted by p.
Roughly, for every part of the domain, Bob has to tell whether he has secrets
with the corresponding hash prefix. The amount of detail in the response of
Bob is hardly restricted. The only constraint for Bob is that if Bob does not
refuse having any secrets in the domain, his description has to be more detailed
than the question of Alice. How much more detailed it will be, is up to Bob to de-
cide. (A special case of the protocol, which we will introduce shortly, is where
the amount of extra detail is fixed.)

More formally, a response set is a set Rp = {M |M = ask(p · s) or M =
refuse(p · s)}, such that there is a set Sp of binary strings which satisfies the
following properties:

150 Chapter 10. Many-to-many Protocols (T-2)

Sp = Sask
p ∪ Srefuse

p , (10.1)

Sask
p = {s|ask(p · s) ∈ Rp}, (10.2)

Srefuse
p = {s|refuse(p · s) ∈ Rp}, (10.3)

Sask
p ∩ Srefuse

p = ∅, (10.4)

∀s ∈ Sask
p : length(s) ≥ 1, (10.5)

∀s ∈ Srefuse
p : length(s) ≥ 0, (10.6)

∀s ∈ Sp : length(s) ≤ (l − length(p)), (10.7)
∀s ∈ Sp : ¬∃s′ ∈ Sp : ∃s′′ ∈ {0, 1}∗ : s = s′ · s′′, (10.8)

∀h ∈ {0, 1}l : ∃s ∈ Sp : ∃s′′ ∈ {0, 1}∗ : h = s · s′′. (10.9)

Thus, the binary string p is suffixed with a number of strings s. Some of
the suffixes correspond to ask messages (10.2), and some to refuse messages
(10.3). There are no suffixes which are used in an ask message and in a refuse
message simultaneously (10.4). Suffixes which are part of an ask message have
minimum length one (10.5), and suffixes which are part of a refuse message
have minimum length zero (10.6).

When all suffixes are taken together into Sp (10.1) the following hold: Every
suffix is length-bounded by l− length(p) (i.e., length(p ·s) ≤ l) (10.7). There are
no two suffixes such that one suffix is a prefix of the other suffix (10.8). Every
binary string of length l has a prefix in Sp (10.9).

Note that within a refuse message, s may be of zero length, but not in an
ask message. If an s of zero length would be allowed in an ask message, there
would be no guarantee that the T-2 protocol would ever terminate: every ask
message could be answered with exactly the same message, creating an infinite
loop.

Because both players know what messages they send, and all messages sent
are assumed to arrive, both players can detect whether the protocol has termi-
nated, i.e., whether all obligations have been met. The most efficient protocol
run possible for determining the intersection is a run in which both players
only send ask(p1) messages if they indeed possess secrets whose hash value
has the prefix p1, and send refuse(p1) messages otherwise. This strategy can
however not be enforced.8

To illustrate how a collection of subprotocols establishes the intersection of
two knowledge bases, let us suppose that hash values are only four bits long,
A and B have restricted themselves to strings s of length 1. Moreover, suppose
that A possesses files with prefixes 0111, 1001 and 1010, and B possesses files
with prefixes 0001, 1010, 1011 and 1101. These sets correspond with the sets
KBA and KBB in Figure 10.1. Within this context, Table 10.3 shows how the
protocol may develop.

8 That is, enforcing such a strategy would result in a far less efficient protocol, while guaranteeing
protocol efficiency would be the purpose of enforcing the strategy.

10.2. Specification of the T-2 Protocol 151

ste
p

play
er

p messages (Rp) message meaning
1 A {ask(ε) } I’ve got some secrets whose prefix is ε.
2 B ε {ask(0) , I have got some secrets with prefix 0

ask(1) } and some with prefix 1.
3 A 0 {refuse(00) , I do not have secrets with prefix 00,

ask(01) } but I do have some with prefix 01;
1 {ask(10) , moreover, I have secrets with prefix 10,

refuse(11) } but I don’t have any with prefix 11.
4 B 01 {refuse(010) ,

refuse(011) }

}
Sorry, no secrets with prefix 01 here,

10 {refuse(100) , also no secrets with prefix 100,
ask(101) } but indeed some with 101 here.

5 A 101 {ask(1010) , Some secrets with prefix 1010,
refuse(1011)} but none with 1011 here.

TABLE 10.3: A sample run of interleaved subprotocols for establishing the in-
tersection. In the message meaning column, ‘some’ should be read as ‘zero or
more’, and ‘secret with prefix’ should be read as ‘secret with hash value with
prefix’.

It can be seen that A and B in turn increase the prefixes in their messages by
one bit. Every ask(p1) message obliges the opposing player to respond. More
specifically, step 2 is a response to step 1, step 3 contains two responses to step
2, step 4 contains two responses to step 3, and finally step 5 is a response to the
last part of step 4. Step 5 should lead to a subprotocol for mutually proving
possession of the file with prefix 1010. In course of the protocol run, A has
said she does not possess files whose hashes start with either 00, 11 or 1011,
and B has said he does not possess files whose prefixes start with either 010,
011 or 100. Thus, 9/16 of the full hash domain has been refused by A, and
6/16 by B. There remains 1/16 of the domain of which neither player has
refused possession, though the subprotocol for determining intersection has
terminated. This means that this remaining 1/16 part of the domain denotes
possible candidates KBAB? for actual list intersection. For each element in the
remaining set, a subprotocol for proving possession must be invoked. In this
case, the remaining set contains only one hash value, 1010.

The protocol run shown in Table 10.3 can also be depicted as a binary tree
that grows as the protocol proceeds. Figure 10.4 shows this binary tree. The
binary tree after protocol execution (the rightmost one) closely resembles the
hash value prefix tree that belongs to KBA ∩ KBB , shown at the right of Fig-
ure 10.1.

The protocol states shown in Figure 10.4 can also be depicted as colored sur-
faces, which is done in Figure 10.2. The whole surface denotes the whole set
Ω. As the protocol progresses, the structure of the surface becomes finer. Light
gray blocks denote parts of the domain for which Alice has sent a refuse mes-

152 Chapter 10. Many-to-many Protocols (T-2)

1 2 3 4 5

FIGURE 10.2: Interleaved subprotocols for establishing the intersection, shown
as a colored surface, with l = 4, |KBA| = 3, |KBB | = 4, |KBA ∩ KBB | = 1.
The protocol run depicted here corresponds with the protocol run shown in
Table 10.3 and Figure 10.4. See the text for explanation.

FIGURE 10.3: Interleaved subprotocols for establishing the intersection, shown
as a colored surface, with l = 16, |KBA| = 40, |KBB | = 40, |KBA ∩KBB | = 10.
See the text for explanation.

10.2. Specification of the T-2 Protocol 153

1q 2qq q0�
��

1Z
ZZ

3qq q0�
��

1Z
ZZ

× ×q q 0

1J
J

4qq q0�
��

1Z
ZZ

× ×q q 0

1J
J

qBB 1× × ×

5qq q0�
��

1Z
ZZ

× ×q q 0

1J
J

qBB 1× × × q��
0
×

TABLE 10.4: Interleaved subprotocols for establishing the intersection, shown
as a growing binary tree. The protocol run depicted here corresponds with
the protocol run shown in Table 10.3. Every ‘×’ corresponds with a refuse
message. Every node corresponds with an ask message. The leftmost tree,
which contains only the root node, corresponds with the protocol state after the
first message (ask(ε)). The rightmost tree corresponds with the protocol state
after completion of the protocol, when KBAB? = {1010} has been established.

sage. Dark gray blocks represent parts of the domain for which Bob has sent a
refuse message. White blocks represent parts of the domain for which neither
Alice nor Bob has sent a refuse message. The sizes of the blocks correspond
with the proportion of the domain that has been refused in the corresponding
message.

For a first impression of how the protocol scales up, and how this affects
the protocol state, Figure 10.3 shows the final state of a protocol where l = 16,
|KBA| = 40, |KBA| = 40, |KBA ∩ KBB | = 10, all suffixes s are of length 1 and
all hash values are randomly chosen.9

While meeting their protocol obligations, the participants have a lot of free-
dom, of which we mention a few important aspects:

1. It is not a protocol violation to send ask(p1) messages if the player actu-
ally does not have any secret IV ∈ KBV of which p1 is a hash prefix. The
player may ‘act as if’ he has some secrets which he in fact does not have.

2. The set Rp (sent in response to a message ask(p)) does not have to be
sent at once. It may be sent in parts, interleaved with other response sets
Rp′ . Parts of Rp may even be sent only after the opposing player has
performed some moves. This also means that the exact details of Rp can
be chosen in response to the opposing player’s future moves.

3. The length of the string s may be longer than 1. Thus, a player can choose
to surrender multiple bits of information to the opposing player within
one step.

These freedoms allow participants in the protocol to choose between a lot
of different strategies. In Section 10.3 we will elaborate on various strategies.

9 Because the hash values come from a cryptographic hash function, it is safe to assume such a
random distribution.

154 Chapter 10. Many-to-many Protocols (T-2)

The approximation KBAB? of the intersection KBA ∩ KBB is the set of
hash values p for which one of the players has sent a message ask(p) with
length(p) = l. It is guaranteed that every secret of which both Alice and Bob
are willing to mutually prove possession, has a corresponding hash value in
the set KBAB?. However, there is no guarantee that there are no bogus hash
values in the set KBAB?: hash values for which either Alice or Bob does not
know a corresponding secret.10 For every member of the set KBAB? a subpro-
tocol for proving possession has to be executed to determine whether the hash
value is bogus or not.

10.2.2 Subprotocol for Proving Possession

When the subprotocols for determining intersection have been completed,
Alice and Bob have constructed a set KBAB? of hash values for which it is
claimed that both Alice and Bob possess a secret with the corresponding hash
values. This set can be transformed into the set KBA ∩ KBB by application
of a subprotocol for proving possession to every element h1 ∈ KBAB?. If a
subprotocol is convincing for a principal Q, this principal considers the secret
I ∈ KBQ for which h1 = H(I,N) holds to be an element of the intersection
KBA ∩ KBB . Thus, the subprotocol for proving possession is a sifting on the
set KBAB?.

An instance of the subprotocol for proving possession is invoked when
within a subprotocol for determining intersection, a message ask(p) has been
sent, with length(p) = l. This ‘prefix’ p actually contains a complete hash value
h1. This hash value h1 refers to a unique secret I , and an instance of the sub-
protocol is purely dedicated to one specific secret. Essentially, the two players
give one another a NP-complete puzzle which they can only solve feasibly if
they indeed possess the secret. The solution is again a hash value, but now
for both players the hash value is different: the solutions to the puzzles prove
possession of the same file, but the puzzles and the answers themselves dif-
fer. Alice has to compute and show hA = H(I,N, A,CB), whereas Bob has to
compute and show hB = H(I,N, B, CA).

For running an instance of the subprotocol for proving possession, a prin-
cipal has to maintain seven state variables, which are listed in Table 10.5.

Every message of the subprotocol contains h1, to distinguish the messages
of the current subprotocol from other subprotocols. In the beginning of the
subprotocol, CA and CB are exchanged without further ado. Using these chal-
lenges, both players can compute hA

2 and hB
2 . Next, the players in turn send

one another prefixes of their proof messages mA and mB . In every step, the
prefix must be longer than the prefix sent in the previous step. If in the end of
the protocol it turns out that mA = hA and mB = hB , the players have indeed
mutually proven possession of the file denoted by h.

10 In extremely rare cases, it might happen that Alice and Bob want to mutually prove possession
of different secrets which have the same hash value. Such hash values are also included in
KBAB?.

10.2. Specification of the T-2 Protocol 155

var
iab

le

meaning
h1 the hash value that denotes the secret for which the subprotocol

has been invoked, h1 = H(I,N)
CA the challenge chosen by Alice
CB the challenge chosen by Bob
hA

2 the hash value that constitutes Alice’s proof, hA
2 = H(I, N, A,CB)

hB
2 the hash value that constitutes Bob’s proof, hB

2 = H(I,N, B, CA)
pA the proof message disclosed by Alice
pB the proof message disclosed by Bob

TABLE 10.5: State variables in a subprotocol for proving possession

More formally, we arrive to the following description of the subprotocol for
proving possession:

• When a principal Q sends a message ask(p), with length(p) = l, the
player is obliged to also send a message challenge(h1, CQ) with h1 = p.
The challenge CQ is of fixed length and its contents may be freely chosen
by the sender Q.

• When a principal Q receives a message challenge(h1, C), and he has not
yet sent a message challenge(h1, CQ) (that is, a challenge for the same
value of h1), this player is obliged to send two messages:
challenge(h1, CQ) where CQ may be freely chosen by the sender, and
proof(h1, pQ) where pQ is a binary string with length(pQ) ≤ l.

• When a player receives a message proof(h1, p), with length(p) ≤ l, then
he has to respond with a message proof(h1, pQ), with pQ = p′Q · s, where
p′Q is the last prefix the principal Q has disclosed within the current sub-
protocol (or ε if the player has not yet sent a proof message within the
current subprotocol). There is a required minimum length of pQ, which
depends on p. If length(p) = l, then pQ should be of length l as well. Oth-
erwise, it should be the case that length(pQ) > length(p). The subprotocol
terminates when both players have sent a prefix of length l.

What actually happens within this subprotocol, is that the players in turn
disclose a few bits of the value they must compute, the solution to their NP-
hard puzzle. In each step, the prefix shown must be at least one bit longer than
the last one shown by the opposite player.

Similar to the subprotocol for determining intersection, the hash values are
disclosed in parts, more specifically in ever longer prefix strings. As in the pro-
tocol for determining intersection, it is important to appreciate what informa-
tion is actually transferred within the messages. The bit strings pA and pB may
be equal to hA

2 and hB
2 respectively, but this is not required. Of course, if these

values are (pairwise) not equal, this implies that the secrets that correspond to
h1 will not be considered an element of KBA ∩KBB .

156 Chapter 10. Many-to-many Protocols (T-2)

ste
p

play
er

messages message meaning
1 A {ask(1010) , Let’s run the protocol for 1010,

challenge(1010, 0110)} I challenge you, CA = 0110.
2 B {challenge(1010, 1110), I challenge you, CB = 1110,

proof(1010, 1) } the first bit of my proof is 1.
3 A {proof(1010, 01) } The first two bits of my proof are 01.
4 B {proof(1010, 110) } The first three bits of my proof are 110.
5 A {proof(1010, 0100) } The four bits of my proof are 0101.
6 B {proof(1010, 1101) } The four bits of my proof are 1101.

TABLE 10.6: A sample run of the subprotocol for proving possession. The
hash value secret for which possession can be proven in this protocol is 1010.
For completeness, the ask message leading to the protocol is included in the
first step.

To illustrate how a single subprotocol works, let us again suppose that hash
values are only four bits long, and A has sent ask(1010) to B. Table 10.6 shows
how the protocol may develop. At the end of the protocol run the full ‘proofs’
pA and pB are known: pA = 0100 and pB = 1101. Whether these ‘proofs’ are
convincing depends on whether pA = hA

2 and pB = hB
2 .

Again, the principals have a lot of freedom in how they act in the protocol:

1. The players are not obliged to actually send prefixes of the actual proof
of possession; they are allowed so send any information they like, as long
as they adhere to the syntactical rules.

2. The players may increase the length of their prefixes faster than the min-
imum requirement.

These options leave room for many strategies. Assuming that the players
want to prove possession of the secret to one another and want to make sure
they get a reciprocal proof in return, there is an optimal strategy which is very
simple. As soon as both challenges are known, compute hA and hB . As long
as the other player’s shown prefix is a prefix of the proof he should send, re-
ply ‘truthfully’ by sending the prefix of your own proof, which is only one bit
longer than the other player’s last prefix. As soon as the other player’s shown
prefix is not a prefix of the expected proof, stop sending parts of your own
proof, but append random noise to your previously sent prefixes until the pro-
tocol terminates.

This strategy ensures that if the other player chooses to abort the protocol,
the other player only has an advantage of one bit. Also, if the other player does
not know the secret IV , your proof of possession of the secret is not communi-
cated to the other player (or at most one bit of it). When both players adopt this
strategy, they will obtain a mutual proof when both players possess the secret
IV in question. As such, this strategy guarantees fairness (see page 23).

10.3. Making the Protocol Efficient by Restrictions 157

10.3 Making the Protocol Efficient by Restrictions

The protocol description leaves a lot of freedom to principals participating in
the protocol (see the lists on pages 153 and 156). This means that the principals
can develop and use various strategies while engaging in the T-2 protocol. For
example, a reluctant strategy is to never send refuse messages. A cooperative
strategy is to send send as many refuse messages as possible, while ‘merging’
refuse messages of adjacent prefixes.11

Due to this large amount of freedom in the protocol specification it is im-
possible to give precise measurements of the communication complexity of the
protocol. Moreover, the freedom itself increases the communication complex-
ity: many possible protocol actions imply the need for many bits to encode
one single protocol action. In this section, we will impose restrictions on the
protocol that allow (1) efficient encoding of the protocol actions and (2) precise
computations and measurements of the communication complexity (given in
Section 10.4).

The restrictions we impose are the following:

1. It is assumed Alice starts the protocol with the message ask(ε)

2. In the subprotocols for determining intersection:

(a) All suffixes s are of length 1.

(b) All sets Rp are sent in order of increasing length of p.

(c) All sets Rp with equal length of p are sent in the lexicographical
order of p.

3. In the subprotocols for proving possession:

(a) The challenges are sent as soon as possible in the lexicographical
order of h1.

(b) For every h1, the first proof(h1, pQ) message, pQ is of length 1. These
first proofs are sent as soon as possible, but after all challenges have
been sent.

(c) All suffixes s are of length 2, except the last suffix, which is of length
1.

(d) All messages proof(h1, pQ) are sent in order of increasing length of
pQ.

(e) All messages proof(h1, pQ) with equal length of pQ are sent in the
lexicographical order of h1.

11 That is, it is not the sheer number of messages that counts, but the proportion of the domain
Ω for which a principal sends refuse messages. If this proportion is maximal, the strategy is
called cooperative.

158 Chapter 10. Many-to-many Protocols (T-2)

messages (Rp) encoding
{refuse(p · 0), refuse(p · 1)} 00
{refuse(p · 0), ask(p · 1)} 01
{ask(p · 0), refuse(p · 1)} 10
{ask(p · 0), ask(p · 1)} 11

TABLE 10.7: Encoding for sets Rp where ∀s : |s| = 1 and p may be omitted.
Every refuse is encoded as a 0, and every ask as a 1.

These restrictions have a huge impact on the protocol runs: The first mes-
sage message can be omitted (1). Bob (Alice) sends only sets Rp where the
length of p is odd (even) (2a). The principals send all their sets Rp out as soon
as possible (2b), which reduces the number of communication steps for deter-
mining intersection down to l. The principals send their sets Rp in a strictly
imposed order (2c).

The challenges are sent in a strictly imposed order (3a). Bob (Alice) sends
only proofs pA (pB) where the length of pA (pB) is odd (even) (3b and 3c). The
principals send all their proofs pQ out as soon as possible (3b and 3d), which
reduces the number of communication steps for proving possession down to
l + 1. The principals send their proofs pQ in a strictly imposed order (3e).

As a result, the total number of communication steps in a protocol run
where possession is proven is 2 · l + 1. If the set KBAB? is empty, the total
number of communication steps is at most l. Moreover, as a result of the im-
posed order, it is always possible to reconstruct for which prefix p or hash value
h1 a message is bound to arrive. Thus, sending the prefix p or the hash value
h1 itself is redundant.

In the subprotocols for determining intersection, the suffixes s are of length
1, and the prefix p can be omitted from the message sets Rp. As a result, we can
encode every set Rp in only two bits. This is shown in Table 10.7.

In the subprotocols for proving possession, h1 can also be omitted because
of the ordering of the messages. Also, sending the full prefix pQ in every mes-
sage is redundant, because a large part of the prefix has already been sent in a
previous message. It is only needed to send the suffix s.

Using these coding schemes, the protocols shown in Tables 10.3 and 10.6
can be merged into one single protocol run, shown in Table 10.8. It is a run of
the restricted T-2 protocol on the sets KBA = {0111, 1001, 1010} and KBB =
{0001, 1010, 1011, 1101}. The principals are cooperative, they send as many
refuse messages as possible. The column ‘message’ denotes the actual com-
municated bits. Observe that from the bits in the ‘message’ column, it is pos-
sible to reconstruct the columns p and h1, and with help from Table 10.7 it is
possible to reconstruct the decoded messages. Moreover, observe that the first
twelve bits communicated in the protocol (110110000110) correspond exactly
to the binary encoding (explained in Section 10.1) of the prefix tree that is con-
structed in the protocol (shown at the right of Figure 10.4).

10.4. Determining Communication Complexity 159

ste
p

play
er

p h1 m
es

sa
ge

decoded message
0 A {ask(ε)}
1 B ε 11 {ask(0), ask(1)}
2 A 0 01 {refuse(00), ask(01)}

1 10 {ask(10), refuse(11)}
3 B 01 00 {refuse(010), refuse(011)}

10 01 {refuse(100), ask(101)}
4 A 101 10 {ask(1010), refuse(1011)}

1010 0110 challenge(1010, 0110)
5 B 1010 1110 challenge(1010, 1110)

1010 1 proof(1010, 1)
6 A 1010 01 proof(1010, 01)
7 B 1010 10 proof(1010, 110)
8 A 1010 00 proof(1010, 0100)
9 B 1010 1 proof(1010, 1101)

TABLE 10.8: A sample protocol run of the restricted T-2 protocol, efficiently
encoded. Only the bits in the column ‘message’ are communicated. From it,
the column ‘decoded message’ can be reconstructed.

10.4 Determining Communication Complexity

Now that we have fully explained the T-2 protocol and its restricted version,
we want to establish the communication complexity of the restricted T-2 pro-
tocol. Some steps in this process are simple, some are rather complicated. Our
approach is simple: we compute the simple parts of the complexity, and we
perform some experiments to estimate the complicated parts of the complex-
ity.

Although in the previous section, we have restricted the freedom of the
principals dramatically, the principals still have room for various strategies.
We have already mentioned the two most important strategies: the cooperative
and the reluctant strategy. When applied to the restricted T-2 protocol, these
strategies are implemented as follows:

cooperative Choose the sets Rp in such a way that the number of ones in the
encoding of Rp shown in Table 10.7 is minimized. This leads to an inter-
section prefix tree of minimal size.

reluctant Choose the sets Rp in such a way that the number of ones in the
encoding of Rp shown in Table 10.7 is maximized. This leads to an inter-
section prefix tree of maximal size.

Both Alice and Bob can independently choose their strategy. There are more
strategies than the cooperative and the reluctant strategies, but all other strate-
gies fall complexity-wise ‘in between’ the complexities of these two strategies.

160 Chapter 10. Many-to-many Protocols (T-2)

strategy upper bound
size of the binary rep. communication

Alice Bob of the prefix tree |KBAB?| complexity (bits)

coop. coop. 2 · l ·min(|KBA|, |KBB |) |KBA ∩KBB |
2·l·min(|KBA|,|KBB |)
+2·(l+lc)·|KBA∩KBB |

coop. rel. 4 · |KBA| · l 2 · |KBA| 2 · |KBA| · (3 · l + lc)
rel. coop. 4 · |KBB | · l 2 · |KBB | 2 · |KBB | · (3 · l + lc)
rel. rel. 2 · (2l − 1) 2l 2l+1 · (1 + l + lc)− 2

TABLE 10.9: The worst case communication complexity for the restricted T-2
protocol, depending on the strategies of Alice and Bob. The communication
complexity, shown at the right, is the size of the binary representation of the
prefix tree plus 2 · (l + lc) · |KBAB?|.

Therefore, it is sufficient to analyze these two strategies to form an impression
of how the communication complexity depends on the strategies chosen.

• If both Alice and Bob use the cooperative strategy a prefix tree of minimal
size is constructed. In the case of the running example of this chapter, this
corresponds to the tree shown at the right of Figure 10.4.

• If both Alice and Bob use the reluctant strategy, a prefix tree spanning the
full domain Ω is constructed. In the case of the running example of this
chapter, this corresponds to the tree shown at the left of Figure 10.1. The
size of this tree in binary encoding is 2 · (2l − 1).

• If Alice uses the cooperative strategy and Bob the reluctant strategy, a
prefix tree is constructed that closely matches the hash value prefix tree of
Alice. In the case of the running example of this chapter, this corresponds
to the tree shown under KBA in Figure 10.1. The size of this tree in binary
encoding is bounded by 4 · |KBA| · l.

• The case where Alice uses the reluctant strategy and Bob uses the coop-
erative strategy is symmetric to the previous case.

The total communication complexity of a protocol run is the sum of the
communication complexities of the subprotocols for determining intersection
and the subprotocols for proving possession. The former is precisely the size
of the binary encoding of the constructed tree; the latter is precisely 2 · (l + lc) ·
|KBAB?|, where l is the length of the hash values in bits, and lc is the length of
the challenges in bits.

The worst case communication complexities can be calculated rather easily.
The results are shown in Table 10.9. The only case for which the worst case
communication complexity is not so trivial is the case where both principals
use the cooperative strategy. The biggest prefix tree that can be constructed
in this setting occurs in case the prefix trees corresponding to KBA and KBB

overlap almost completely, in which case the size of the prefix tree of the inter-
section is just a little below 2 · l ·min(|KBA|, |KBB |). This is however extremely

10.4. Determining Communication Complexity 161

unlikely to actually happen, as the prefix trees belonging to the sets KBA and
KBB have a uniform random distribution.

For the settings where at least one of the principals uses the reluctant strat-
egy, the average communication complexity is equal to the worst case commu-
nication complexity. The average case communication complexity for the case
where both principals use the cooperative strategy can be expected to be much
lower than the worst case.

Observe that both principals can force the communication complexity to be
at most 2 · |KBQ| · (3 · l + lc) by using the cooperative strategy.

The average case communication complexity for the case where both prin-
cipals use the cooperative strategy can be derived mathematically, but this is
very complicated.12 So instead, we did some experiments to estimate the com-
munication complexity in this setting.

The communication complexity for the T-2 protocol consists of two contri-
butions:

• communication resulting from secrets that are shared
This communication is heavily influenced by |KBAB?|. For cooperative
principals |KBAB?| will be equal13 to |KBA ∩KBB |.

– communication in subprotocols for determining intersection
This is bounded by 2 · l · |KBAB?|.

– communication in subprotocols for proving possession
This is exactly 2 · (l + lc) · |KBAB?| bits.

• communication resulting from secrets that are not shared
This is only communication in the subprotocols for determining intersec-
tion. We estimated this experimentally.

When these contributions are added up, there will be a little bit of double
counting, as some communication in the subprotocols for determining inter-
section is due to both shared secrets and not-shared secrets.

To estimate the communication resulting from secrets that are not shared,
we performed an experiment in ten different conditions. The conditions differ
in the sizes of the sets KBA and KBB , and these are shown in Table 10.10. In
every condition, l = 256 and KBA ∩KBB = ∅. The hash values corresponding
to the sets KBA and KBB were taken randomly from the domain 2l where
every element had an equal probability. For every condition, the experiment
was performed 1000 times, and the number of bits communicated is recorded.

The results of the experiment are shown in Figure 10.4 and Table 10.11.
Table 10.11 reports for each of the conditions the minimum and maximum ob-
servations, the median, the average and the standard deviation, and also the
12 We have not yet succeeded in establishing a formula which expresses the communication com-

plexity in which we have sufficient confidence. Our gratitude goes to various people who have
tried to help us in finding this formula, most notably to Gerard te Meerman.

13 There is a negligible chance that |KBAB?| is larger than |KBA∩KBB |; in that case one or more
collisions of the hash function must have occurred.

162 Chapter 10. Many-to-many Protocols (T-2)

condition |KBA| |KBB | |KBA|
|KBB |

1 1 1 1
2 1 10 0.1
3 1 100 0.01
4 1 1000 0.001
5 10 10 1
6 10 100 0.1
7 10 1000 0.01
8 100 100 1
9 100 1000 0.1

10 1000 1000 1

TABLE 10.10: The ten conditions of the experiment to estimate the average
communication complexity of the restricted T-2 protocol with cooperative prin-
cipals. Every condition can be identified by two of the three variables |KBA|,
|KBB | and |KBA|

|KBB | .

bounds of the interval in which the middle 95% of the observations lie. Fig-
ure 10.4 is a density (local frequency) plot of the data.14

At first glance, the only conclusion that can be drawn is that larger sets lead
to more communication. At closer observation, one can see that there are peaks
at approximately 5,5, 55, 550 and 5500 bits that correspond to conditions where
|KBA|
|KBB | = 1, in increasing order of |KBA|. Similarly, there are peaks at approxi-

mately 13,6, 136 and 1360 bits that correspond to conditions where |KBA|
|KBB | = 0.1.

Also, there are peaks at approximately 23,4 and 234 bits that correspond to con-
ditions where |KBA|

|KBB | = 0.01. This suggests two findings:

1. An increase of a factor 10 in the sizes of both |KBA| and |KBB | leads to
an increase of a factor 10 of the communicated bits.

2. The fraction |KBA|
|KBB | influences the number of communicated bits.

To investigate these hypotheses, we divide the communication by the sum
of the set sizes, which gives us Figure 10.5 and Table 10.12. Figure 10.5 is a den-
sity plot15 of the communicated bits divided by |KBA|+|KBB |, and Table 10.12
gives descriptive statistics of the data (similar to Table 10.11). The conditions
have been re-ordered to highlight the structure that can be seen in Figure 10.5.

The findings are very clear:

14 Technically, Figure 10.4 is not a density plot. It is a density plot of the base 10 logarithm of the
observations with modified labels at the x-axis. The labels at the x-axis are 10x where it should
technically read x. In this way, the data plotted is easy to read, while the ‘visual surface’ for
each distribution is equal.

15 As opposed to Figure 10.4, Figure 10.5 is a ‘true’ density plot. The x-axis is in linear scale, and
the surfaces below the lines are both ‘visually’ and mathematically equal (i.e., equal to 1).

10.4. Determining Communication Complexity 163

|KBB | = 1
|KBB | = 10
|KBB | = 100
|KBB | = 1000

15
10

5
0

de
ns

it
y

1 5 10 50 100 500 1000 5000
bits ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸ 6

|KBA| = 1 10 100 1000

FIGURE 10.4: The number of communicated bits in the restricted T-2 protocol
with cooperative participants, shown as a compressed density plot.14 For every
distribution, |KBA| can be found by finding its peak, and looking straigt down
to where either a brace or an arrow is found. At the other side of the brace or
arrow, |KBA| is printed.

|KBA| |KBB | min −95 med +95 max avg stdev
1 1 4 4 4 14 22 5,97 2,77
1 10 4 6 12 24 30 13,67 4,24
1 100 12 16 22 34 40 23,47 4,40
1 1000 24 24 34 44 52 33,38 4,61

10 10 20 34 56 78 94 55,67 11,75
10 100 82 104 136 168 196 135,82 16,95
10 1000 152 200 234 268 300 233,84 18,25

100 100 438 484 552 620 660 551,16 35,26
100 1000 1180 1256 1356 1470 1534 1358,29 54,01

1000 1000 5142 5298 5510 5736 5860 5508,95 110,98

TABLE 10.11: Descriptive statistics of the number of communicated bits in the
restricted T-2 protocol with cooperative participants. For every condition, 1000
experiments were done. Shown are the minimum and maximum observations
(min, max), the bounds of the interval where the middle 95% of the obser-
vations lie (−95, +95), the median andaverage (med, avg), and the standard
deviation (stdev).

164 Chapter 10. Many-to-many Protocols (T-2)

|KBB | = 1
|KBB | = 10
|KBB | = 100
|KBB | = 1000

15
10

5
0

de
ns

it
y

0 1 2 3 4
bits

|KBA|+|KBB |

6︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
= |KBA|

|KBB |0,001 0,01 0,1 1

FIGURE 10.5: The number of communicated bits per compared secret in the
restricted T-2 protocol with cooperative participants, shown as a density plot.
For every distribution, |KBA|

|KBA| can be found looking straight beneath its peak.

|KBA|
|KBB | |KBB | min −95 med +95 max avg stdev

0,001 1000 0,024 0,024 0,034 0,044 0,052 0,034 0,005
0,01 100 0,119 0,158 0,218 0,317 0,396 0,232 0,044
0,01 1000 0,151 0,198 0,232 0,265 0,297 0,232 0,018
0,1 10 0,364 0,545 1,091 2,182 2,727 1,243 0,386
0,1 100 0,745 0,945 1,236 1,527 1,782 1,234 0,154
0,1 1000 1,073 1,142 1,233 1,337 1,395 1,235 0,049
1 1 2,000 2,000 2,000 7,000 11,000 2,986 1,386
1 10 1,000 1,700 2,800 3,900 4,700 2,783 0,588
1 100 2,190 2,420 2,760 3,090 3,300 2,756 0,176
1 1000 2,571 2,649 2,755 2,868 2,930 2,755 0,055

TABLE 10.12: Descriptive statistics of the number of communicated bits per
compared secret in the restricted T-2 protocol with cooperative participants.
For every condition, 1000 experiments were done. Shown are the minimum
and maximum observations (min, max), the bounds of the interval where the
middle 95% of the observations lie (−95, +95), the median and average (med,
avg), and the standard deviation (stdev).

10.4. Determining Communication Complexity 165

upper bound on average
protocol communication complexity (bits)

iterated T-1 (l + 1) · |KBA|+ (2 · l + 2 · lc) · |KBA ∩KBB |
restricted T-2 with

cooperative principals 2, 76 · |KBA ∪KBB |+ (4 · l + 2 · lc) · |KBA ∩KBB |

TABLE 10.13: Bounds on average communication complexities of the T-1 and
the T-2 protocol.

1. For every fraction |KBA|
|KBB | , the average amount of communicated bits per

|KBA|+|KBB | is practically identical. In the worst case, where |KBA|
|KBB | = 1,

the average communication complexity is approximately 2, 76 bits per
|KBA|+ |KBB |.

2. When the fraction |KBA|
|KBB | decreases (i.e., the difference between |KBA| and

|KBB | grows), the average amount of communicated bits per |KBA| +
|KBB | decreases.

3. As |KBB | (and |KBA|) grow larger, the standard deviation clearly de-
clines.

This is good news. The first finding essentially means that the communica-
tion complexity of the restricted T-2 protocol with cooperative principals is lin-
ear in |KBA|+|KBB |. The second finding means that if |KBA| and |KBB | are of
dissimilar size, the efficiency of the protocol increases; the average communica-
tion complexity is always below (approximately) 2, 76 · 2 ·max(|KBA|, |KBB |).
The third finding entails that the protocol scales up very well: as the set sizes
increase the actual communication complexity for a particular run will be very
close to the expected communication complexity (which is linear in |KBA| +
|KBB |).

Table 10.13 gives a first impression of the average communication complex-
ity of the restricted T-2 protocol with cooperative principals. Also, the commu-
nication complexity of the alternative, iteration of the T-1 protocol, is shown.

For the T-1 protocol, the actual communication complexity is exactly the
formula given. The principals could still optimize the complexity, if they first
establish whether |KBA| or |KBB | is smaller, and change roles in case |KBA| >
|KBB |. With this optimization, the term (l + 1) · |KBA| can be replaced with
(l+1)·min(|KBB |, |KBB |), at the cost of an extra term that signifies the commu-
nication complexity of the protocol that determines whether |KBA| > |KBB | is
the case.

For the restricted T-2 protocol with cooperative principals, with |KBA| =
|KBB | the average communication complexity is slightly lower than the for-
mula given (due to double counting of some communicated bits). If |KBA| 6=
|KBB |, the average communication complexity improves even more. When
min(|KBA|,|KBB |)
max(|KBA|,|KBB |) = 0, 1, the factor 2,76 reduces to approximately 1,24. When

166 Chapter 10. Many-to-many Protocols (T-2)

min(|KBA|,|KBB |)
max(|KBA|,|KBB |) = 0, 01, the factor 2,76 reduces to approximately 0,23. The
precise relation between the fraction and the factor remains subject to future
research. Nevertheless, it is not too hard to see that the factor decreases so
fast that the average communication complexity of the T1 protocol is always
larger than the average communication complexity for the restricted T-2 proto-
col with cooperative principals.16

10.5 Conclusion

In this chapter, we have generalized the T-1 protocol into the T-2 protocol that
does many-to-many intersection. Thus, using the T-2 protocol, the following is
possible, in an efficient way17:

• Airline carriers can allow the authorities of (for example) the United
States of America to check whether wanted terrorists are on board of the
airplane without disclosing the identities of the non-criminals.

• Police officers can compare the electronic dossiers of their investigations
without relying on a trusted third party (i.e., the VROS, see Section 1.5).

• Intelligence agencies can compare their secrets without disclosing them.

In cases where the set sizes |KBA| and |KBB | are public information, the
T-2 protocol is just as secure as the T-1 protocol. The T-2 protocol works by
means of two principals disclosing hash value prefixes, in increasing length.
In this way, they can efficiently and adaptively survey the complete domain of
possible secrets.

The T-2 protocol leaves room for various strategies to be used by the prin-
cipals. Due to the security of the protocol, there is no informational benefit
in choosing one strategy over the other. The chosen strategy influences the
communication complexity. If the T-2 protocol is restricted in a particular way,
efficient coding is used, and both principals use a particular strategy, then the
protocol satisfies the fairness condition.

16 There are two ways in which this can be seen:

1. If iterated T-1 would be faster than T-2, this would mean that in the restricted T-2 protocol
with cooperative principals, the branches of the tree that correspond with the KBA would
‘escape’ the intersection prefix tree at a depth greater than l. That would mean that many
collisions of the cryptographic hash function would occur. The chance of this happening is
negligible, and is certainly nowhere close to average case behavior.

2. Observe that the communication complexity of the T-2 protocol where Alice uses the co-
operative strategy and Bob the reluctant strategy (shown in Table 10.9), is equal to the
communication complexity for the case where both principals use the cooperative strat-
egy and KBB = Ω (Bob holds the whole domain). That communication complexity,
2 · |KBA| · (3 · l + lc) is only larger than (l + 1) · |KBA|+ (2 · l + 2 · lc) · |KBA ∩KBB | by
a constant factor. (If l = lc, the factor is 8/5). But as KBB is only a sparse subset of Ω, this
factor will be defeated.

17 See Section 8.1 for a detailed description of these application areas.

10.5. Conclusion 167

Let us see how the T-2 protocol works:

1. How are the individual secrets of the players protected?
The T-2 protocol is a parallel composition of the T-1 protocol. See Sec-
tion 9.5 for a summary of why the T-1 protocol protects the secrets of the
players.

2. Is the number of secrets that a player possesses hidden from the other player?
No. If a player wants to infer how many secrets the other player has,
and the other player plays the cooperative strategy18, then the first player
can play the reluctant strategy to find out how many secrets the other
player has. However, when both players play the reluctant strategy, the
communication complexity (and thus the run time) of the T-2 protocol is
exponential.
In the analysis of the T-2 protocol, one should consider the set sizes |KBA|
and |KBB | to be public knowledge.

3. How can the players enforce fairness?
The proofs of possession are disclosed bit by bit, turn by turn. Both play-
ers know which bits should be sent by the other player. As soon as the
bit sent by the other player is different from the expected bit, a player
stops sending his own proof, and starts sending random noise bits. In
this manner, the advantage that a player can get over the other player is
limited to one bit of the proof.

4. How is the communication complexity optimized?
The hash values of the secrets that are only known to one player, are only
partially communicated. Of these hash values, only a prefix is commu-
nicated that is just long enough for the ‘ignorant’ player to determine he
does not possess a secret corresponding to the hash value prefix.
Moreover, all hash values and prefixes are compressed by representing
them in a tree structure.

5. How many communication steps are required?
When the players have a secret in common, the number of communi-
cation steps is 2 · l + 1, where l is the length of the hash values in bits.
When the players have no secrets in common, the number of communi-
cation steps depends on the number of secrets they possess; in practice
the number of communication steps will be much smaller than l.

6. How many bits need to be communicated?
For every secret that is possessed by only one player, on average at most
three bits are communicated. For every secret that is possessed by both
players, 4 · l + 2 · lc bits are communicated, where l is the length of the
hash values in bits, and lc is the length of the challenge.

18 The cooperative and reluctant strategy are explained in Section 10.4.

