
Part IV

Protocols

121

Chapter 9

The T-1 protocol, our solution for 1-to-many
knowledge authentication, is presented. It uses

cryptographic hash functions to ‘point at’ secrets,
and to prove possession of secrets. The T-1

protocol is proven secure in our extended version
of GNY logic.

1-to-many Protocols
(T-1)

In the previous chapter, the problem of ‘comparing information without leak-
ing it’ has been extensively explained. In this chapter, we will present our T-1
protocol1, which is the most efficient solution for the 1-to-many case. That is
the case where one principal has only one secret in mind, and the other player
any number of secrets. In the latter part of this chapter, we will prove the
T-1 protocol correct using an extended version of GNY logic. The aims and
requirements of the T-1 protocol can be illustrated with the following story:

Victor is a secret agent, and keeping secret his intelligence has a
high priority. However, his mission is to protect Peggy from great
dangers, so when needed, protecting Peggy takes priority over
keeping his information secret. Now he is confronted with the fol-
lowing situation: Victor does not know whether certain informa-
tion I known to him, is also known to Peggy. (‘Peggy is kindly
invited for a dinner at the Mallory’s place.’)2 Victor knows that
Mallory is a very malicious person. If Peggy does know that she is
kindly invited, Victor would like to send her a warning message
(‘Don’t go there, it is a trap. You will get killed in case you go
there.’). However, if Peggy has somehow not received the invita-
tion I , Victor would like to keep his warning for himself, as well as
his knowledge of Peggy’s invitation. Therefore, Victor asks Peggy

1 The name of the protocol stems from naming convention in Table 8.1: the author of the protocol
(Teepe) and a number to distinguish it from other protocols by the same author.

2 For clarity, this information could be possession of a computer file stating the invitation. This
sets apart the matter whether the information is truthful.

123

124 Chapter 9. 1-to-many Protocols (T-1)

to prove her knowledge of the invitation. Only after the proof, Vic-
tor will disclose his warning to Peggy. In the protocol, Peggy does
not learn whether Victor actually knew about the invitation, other
than from his possible next actions, such as sending a warning.

Peggy is willing to prove her knowledge of the invitation I , but
only if she can make sure that Victor does not cheat on her, by ac-
tually finding out about the invitation because he tricks her into
telling him that she has been invited. That is, she only wants to
prove her knowledge of the invitation if Victor actually knew about
the invitation beforehand.

Actually, this description only describes the first one of three possible con-
figurations of the T-1 protocol:

1. The verifier initiates (‘can you prove to me that you know I?’)

2. The prover initiates (‘I’ll show you that I know I!’)

3. Mutual proof: both players simultaneously prove to one another that
they possess I .

A situation where such mutual verification could be used in real life is ‘cau-
tious gossip’, such as gossiping about the Geertje’s pregnancy (explained in the
opening of the previous chapter).

In this chapter we will mainly focus on configuration 1, though we stress
that the proof for configuration 1 can easily be modified to prove the protocols
for the other cases.

From here on we will call pieces of information ‘information blocks’, or IBs
for short. Here follows a somewhat more formal description of the story:

Peggy has a certain IB I . If and only if Victor also possesses this
IB I , she wants to prove her possession of it to Victor upon his re-
quest. Furthermore, Peggy need not know whether Victor indeed
possesses IB I , in order to execute the protocol safely.

Thus, if Victor has the same IB, he can verify that Peggy indeed has it, but
if Victor does not have the same IB, he does not learn anything.

9.1 Prerequisites

The T-1 family of protocols relies on some assumptions and uses some cryp-
tographic primitives. Furthermore, we use some terminology in the protocol
and its analysis. These prerequisites will be explained in this section.

The basic assumptions are that the communication channel cannot be mod-
ified by an adversary, and that it is authenticated. That is, the principals in
the protocol know with whom they are communicating. Their communication

9.1. Prerequisites 125

message meaning
ask(h1) A principal asks the other player to look whether he knows

a file which has the hash value h1.
halt A principal stops proving and/or verifying possession.
challenge(C) A principal asks the other player to prove possession of a

file, using the challenge C.
prove(h2) A principal proves possession of a file, by presenting the

hash value h2.

TABLE 9.1: Basic messages used in the T-1 protocol.

may be overheard, but not modified. To obtain such a communication channel,
standard cryptographic techniques can be used, such as asymmetric cryptog-
raphy.

The most important cryptographic primitive used is the non-incremental
cryptographic hash function H(·), which has been explained extensively in
Chapter 3. This function H(·) is publicly known and available to all proto-
col particupants and malicious parties alike. The most important properties of
a non-incremental cryptographic hash function H(·) are:

• that it is easy to compute;

• that its inverse is not easy to compute: given H(I), it is infeasible to infer
any property of I ; and

• that it is impossible to compute H(I) from other inputs than I itself (I
has to be present to compute H(I)).

In particular, for the non-incremental cryptographic hash function the random
oracle model is used (see Section 3.3), which is roughly the assumption that the
output of H(·) is indistinguishable from random noise.

This primitive is sufficient for the protocols, but it is possible to improve
the computational complexity of the protocol if also some form of encryption
is used (see Section 9.3). For our purposes, it does not really matter whether the
encryption is symmetric or asymmetric, but where we are required to choose,
we will choose asymmetric encryption. (Remember that it is not unlikely that
asymmetric cryptography is used already to maintain the authenticity of the
communication channel.)

In the protocols of the T-1 family, a number of basic messages is used. These
basic messages are listed in Table 9.1. In these basic messages, the values h1, h2

and C occur. The first two are hash values, the latter is a piece of information
with the sole purpose to be unpredictable to anybody but the sender of the
message.

As explained in the introduction of this chapter, three configurations for
the protocol exist. Two configurations are asymmetric in the sense that one

126 Chapter 9. 1-to-many Protocols (T-1)

principal is only a prover, and the other principal is only a verifier.3 In these
configurations, we will refer to the principals with the names Peggy (P) for the
Prover and Victor (V) for the Verifier. In the third configuration, both princi-
pals take both roles. In that configuration, we refer to the principals with the
names Alice (A) and Bob (B). When we refer to a principal which could be any
of the principals P , V , A or B, we use the name Q.

The abbreviations P , V , A and B are unique representations of the respec-
tive identities, such as a full name and birth date, or something like a passport
number. An information block (IB) can be represented as a unique bit string I .
The collection of IBs that a principal Q possesses is denoted KBQ (thus, KBP

for Peggy, and so on).
In the ‘simple’ versions of the T-1 protocol, those that do not depend upon

encryption, it is assumed that the two principals have agreed upon a com-
monly known secret nonce N beforehand. Here, a nonce is a piece of informa-
tion with the sole purpose to be unpredictable to anybody but the participating
principals. The nonce N functions as a secret key shared between the partici-
pating principals.4 The set IQ? is the set of IBs I in possession of principal Q,
for which H(IQ, N) is equal to h1. Thus, IQ? = {IQ ∈ KBQ|H(IQ, N) = h1}.

In the ‘elaborate’ versions of the T-1 protocol, those that do depend upon
encryption, it is assumed that the principals have set up encryption keys in
such a way that the initiator of the protocol can send messages in such a way
that only the not-initiating (but participating) principal can read these mes-
sages. The opposite is not required: the non-initiating principal need not be
capable of sending encrypted messages to the initiating principal. The set IQ?
is the set of IBs I in possession of principal Q, for which H(IQ) is equal to h1.
Thus, IQ? = {IQ ∈ KBQ|H(IQ) = h1}.

Now that the basic prerequisites are explained, we can introduce the ‘sim-
ple’ versions of the T-1 protocol in which no encryption is used.

9.2 Protocol Description (Simple, no Encryption)

There are three configurations of the T-1 protocol, as mentioned in the intro-
duction of this chapter. Of these three configurations we will first show the
‘simple’ version, that is the version that does not depend upon encryption.
These protocols are shown in Figures 9.1 (the verifier initiates), 9.2 (the prover
initiates), and 9.3 (mutual proof).

A crucial step in the protocol is the computation of the set IQ?. By com-
puting this set, a principal ‘interprets’ the other principal’s ask(h1) message.
The set IQ? is the set of principal Q’s IBs that match h1. If a set IQ? is empty,

3 The difference between these two configurations is whether it is the prover or the verifier that
initiates the protocol.

4 Note that N does not function like the key in a keyed cryptographic hash. A keyed crypto-
graphic hash offers hardly any guarantees in case the key is compromised. See Section 3.2 for
more details.

9.2. Protocol Description (Simple, no Encryption) 127

1. Victor chooses an IB IV ∈ KBV of which he wants to test Peggy’s
knowledge; Victor computes h1 = H(IV , N); Victor computes
IV ? ⊆ KBV ; Victor generates a random challenge C

2. Victor sends Peggy the messages ask(h1) and challenge(C)

3. Peggy computes IP ? ⊆ KBP

4. For each IPi
∈ IP ? of which Peggy is willing to prove her knowledge to

Victor, the following happens:

(a) Peggy computes h2i = H(IPi , N, P,C)

(b) Peggy sends Victor the message prove(h2i
)

(c) Victor verifies whether h2i
is equal to any H(IVj

, N, P,C), where
IVj

∈ IV ? (locally computed). If they are equal, Victor concludes
that IPi

equals the matching IVj
, and thereby verifies that Peggy

knows the matching IVj .

5. Peggy sends Victor the message halt

6. Victor concludes that no more prove(h2i
) messages will follow

FIGURE 9.1: The T-1 protocol where the verifier initiates and no encryption is
used

1. Peggy chooses an IB IP ∈ KBP of which she wants to prove her
knowledge to Victor; Peggy computes h1 = H(IP , N)

2. Peggy sends Victor the message ask(h1)

3. Victor computes IV ? ⊆ KBV

4. if IV ? = ∅, Victor sends Peggy the message halt and the protocol is
halted

5. (IV ? 6= ∅) Victor generates a random challenge C

6. Victor sends Peggy the message challenge(C)

7. Peggy computes h2 = H(IP , N, P, C)

8. Peggy sends Victor the message prove(h2)

9. Victor verifies whether h2 (received from Peggy) is equal to any
H(IVj , N, P,C), where IVj ∈ IV ? (locally computed). If they are equal,
Victor concludes that IP equals the matching IVj

, and thereby verifies
that Peggy knows IVj

FIGURE 9.2: The T-1 protocol where the prover initiates and no encryption is
used

128 Chapter 9. 1-to-many Protocols (T-1)

1. Alice chooses an IB IA ∈ KBA of which she wants to prove her
knowledge to Bob, and of which she wants to test Bob’s possession;
Alice computes h1 = H(IA, N); Alice computes IA? ⊆ KBA; Alice
generates a random challenge CA

2. Alice sends Bob the messages ask(h1) and challenge(CA)

3. Bob computes IB? ⊆ KBB

4. If IB? = ∅, Bob sends Alice the message halt and the protocol is halted

5. (IB? 6= ∅) Bob generates a random challenge CB

6. Bob sends Alice the message challenge(CB)

7. Alice computes h2A
= H(IA, N, A,CB)

8. Alice sends Bob the message prove(h2A
)

9. Bob verifies whether h2A
(received from Alice) is equal to any

H(IBi
, N, A,CB), where IBi

∈ IB? (locally computed). If they are equal,
Bob concludes that IA equals the matching IBi

, and thereby verifies that
Alice knows the matching IBi

(which we will call IB from here on)

10. If Bob is not willing to prove his knowledge of IB to Alice, Bob sends
Alice the message halt and the protocol is halted

11. (Bob is willing to prove his knowledge of IB to Alice) Bob computes
h2B

= H(IB , N, B, CA)

12. Bob sends Alice the message prove(h2B
)

13. Alice verifies whether h2B
(received from Bob) is equal to

H(IA, N, B, CA) (locally computed). If they are equal, Alice concludes
that IA equals IB , and thereby verifies that Bob knows the matching IA

FIGURE 9.3: The mutual T-1 protocol, where no encryption is used

principal Q has no IB to prove or verify knowledge of. If there is one IB in the
set, the agent may prove or verify knowledge of this IB.

It is extremely unlikely that there will be more than one IB in the set IQ?.
However, the protocol easily copes with the situation if it occurs.5 If this pro-
tocol is widely adopted and applied, it can be expected that somewhere this

5 If there is more than one IB in the set IQ?, an ‘external’ collision of the hash function has oc-
curred [PvO95]. This is highly improbable, but not impossible. In such a case the principal
wants to discriminate between the members of the set. He can do this by making sure his chal-
lenge CQ yields a different hash H(IQi

, N, P, CQ) for each element IQi
∈ IQ?.

Ensuring this is easy because it is extremely unlikely for two IBs I and I′ that both H(I)
and H(I′) clash and that H(I, CQ) and H(I′, CQ) clash as well. If this would not be extremely
unlikely, this would be a very severe problem of the supposedly cryptographic hash function.
In practice, principal Q may choose a CQ at random and check for security’s sake whether there
are new clashes, and choose another CQ if this would be the case.

This whole process of generating the challenge ensures that each possible h2 corresponds
to exactly one IQi

∈ IQ?. In the figures, we summarize this process as ‘generating a random
challenge such that it discriminates’.

9.3. Making the Protocol More Efficient (Elaborate, Encryption) 129

A Hey! You know what? A Hey! You know what?
B Huh, What? B Huh, What?
A Well, you know, don’t you? A Well, you know, don’t you?
B I don’t know what you are

talking about
B Ahh, yeah, of course

A Well, never mind A Thank you, goodbye

FIGURE 9.4: A rough paraphrase of the T-1 protocols. The above are two differ-
ent conversations between A and B. On the left is the conversation which can
be considered an equivalent of an unsuccessful protocol run. The conversation
on the right can be considered an equivalent of a successful protocol run.

situation will occur. If the protocol could not handle this situation well, data
corruption would be the result. Therefore, the ability to handle such unlikely
situations still is an important feature.

Note that without the challenge C in the protocol, the prover could fool the
verifier if the prover could somehow obtain h1 and h2 without ever knowing
I . Therefore, the challenge C should be unpredictable to the prover, because
it makes such a scenario infeasible. The challenge is there to prevent that the
prover can store and present precomputed, stored values.

Without the nonce N in the protocol, any eavesdropper who happens to
know I can analyze and interpret the protocol, which is undesirable. When
the eavesdropper does not know the N , this analysis and interpretation is no
longer possible. In the next section we further elaborate on eavesdroppers and
their abilities to interpret messages of this protocol. In typical applications
of one-way hashes, the input to the hash is more or less public knowledge.
This protocol on the other hand exploits the fact that the input may not be
publicly known. Successful completion depends on one of the players being
able to ‘invert’ the one-way hash, since it knows the original input to the hash
function.

To summarize, the protocol ‘obscures’ messages in such a way that only
recipients with specific a priori knowledge can interpret the messages. A rough
paraphrase6 of the T-1 protocols can be found in Figure 9.4. It is very sketchy,
but illustrates the non-intuitivity of the protocols in an intuitive way.

9.3 Making the Protocol More Efficient
(Elaborate, Encryption)

The ‘simple’ version of the T-1 protocol, as presented in the previous section,
has a constant communication complexity7, which leaves no room for improve-
ment. The computational complexity does leave some room for improvement.8

6 With thanks to Marius Bulacu, who came up with this paraphrase.
7 More precisely, constant for every secret of which possession is proven.
8 For a basic introduction to complexity, consult Section 2.3.

130 Chapter 9. 1-to-many Protocols (T-1)

1. Create the look-up table, with the columns hash and IB location.
IB location is some information on how to locate the IB on the local
system. (If IBs are files, this would typically be the file name.) Make the
table efficiently searchable on at least the hash column.

2. For each IB IQ ∈ KBQ, compute H(IQ), and insert (H(IQ), location(IQ))
into the table. (Computing the hash value has a time complexity of
size(IQ).)

3. With each modification of personal knowledge, update the look-up
table:

(a) For each added IB IQ, insert (H(IQ), location(IQ)).

(b) For each removed IB IQ, remove (H(IQ), location(IQ)).

(c) Consider each modified IB as an old IB to be removed, and a new
IB to be added.

FIGURE 9.5: The initialisation and maintenance of the look-up table, needed
by any non-initiating player of the protocol

The computationally most expensive part in the protocol is the computation of
the set IQ?. The time complexity of this computation is O(size(KBQ)+ |KBQ|),
where size(KBQ) =

∑
IQ∈KBQ

size(IQ), size(IQ) is the number of bits in IQ, and
|KBQ| is the number of items in KBQ (i.e., the cardinality). Note that this time
complexity essentially is the space required to store all IBs.

In this section we will show how we can improve the computational com-
plexity of the protocol by shifting this computational load to a precomputation
step which is only executed once. The improved protocol can be run any num-
ber of times without requiring this hefty computation.

This process of computing IQ? can be divided into two steps:

1. Precomputing a look-up table of size O(|KBQ|) once, which can be used
in all runs of the protocol which share the same nonce. Generating the
look-up table still has computational complexity O(size(KBQ) + |KBQ|).

2. Looking up received hashes h1 in the table. When an efficient storage
technique for the look-up table is used, this has a time complexity of only
O(ln |KBQ|).

If principal Q learns a new IB IQ, the principal has to update his look-up
table, which has a time complexity of O(ln |KBQ|+ size(IQ)). How to initialize
and maintain the look-up table is described in Figure 9.5.

Computing a look-up table and performing the protocol once, has the same
computational complexity as performing the protocol without any precompu-
tations. Doing precomputations has two benefits. Firstly, the speed of execu-
tion of the protocol is much higher, because there are no expensive computa-
tions to wait for. Secondly, we can only re-use the look-up table as far as it is

9.3. Making the Protocol More Efficient (Elaborate, Encryption) 131

1. Victor chooses an IB IV ∈ KBV of which he wants to test Peggy’s
knowledge; Victor looks up h1 = H(IV); Victor looks up IV ? ⊆ KBV ;
Victor generates a random challenge C

2. Victor sends Peggy the message {ask(h1), challenge(C)}K

3. Peggy decrypts the message from Victor and obtains the messages
ask(h1) and challenge(C); Peggy looks up IP ? ⊆ KBP

4. For each IPi ∈ IP ? of which Peggy is willing to prove her knowledge to
Victor, the following happens:

(a) Peggy computes h2i
= H(IPi

, P, C)

(b) Peggy sends Victor the message prove(h2i
)

(c) Victor verifies whether h2i is equal to any H(IVj , P, C), where
IVj ∈ IV ? (locally computed). If they are equal, Victor concludes
that IPi

equals the matching IVj
, and thereby verifies that Peggy

knows the matching IVj
.

5. Peggy sends victor the message halt

6. Victor concludes that no more prove(h2i) messages will follow

FIGURE 9.6: The protocol where the verifier initiates and encryption is used

1. Peggy chooses an IB IP ∈ KBP of which she wants to prove her
knowledge to Victor; Peggy looks up h1 = H(IP)

2. Peggy sends Victor the message {ask(h1)}K

3. Victor decrypts the message from Peggy and obtains the message
ask(h1); Victor looks up IV ? ⊆ KBV

4. if IV ? = ∅, Victor sends Peggy the message halt and the protocol is
halted

5. (IV ? 6= ∅) Victor generates a random challenge C

6. Victor sends Peggy the message challenge(C)

7. Peggy computes h2 = H(IP , N, P, C)

8. Peggy sends Victor the message {prove(h2)}K

9. Victor decrypts the message from Peggy and obtains the message
prove(h2); Victor verifies whether h2 (received from Peggy) is equal to
any H(IVj

, N, P,C), where IVj
∈ IV ? (locally computed). If they are

equal, Victor concludes that IP equals the matching IVj
, and thereby

verifies that Peggy knows IVj

FIGURE 9.7: The T-1 protocol where the prover initiates and encryption is used

132 Chapter 9. 1-to-many Protocols (T-1)

1. Alice chooses an IB IA ∈ KBA of which she wants to prove her
knowledge to Bob, and of which she wants to test Bob’s possession;
Alice looks up h1 = H(IA); Alice looks up IA? ⊆ KBA; Alice generates a
random challenge CA

2. Alice sends Bob the message {ask(h1), challenge(CA)}K

3. Bob decrypts the message from Alice and obtains the messages ask(h1)
and challenge(CA); Bob looks up IB? ⊆ KBB

4. If IB? = ∅, Bob sends Alice the message halt and the protocol is halted

5. (IB? 6= ∅) Bob generates a random challenge CB

6. Bob sends Alice the message challenge(CB)

7. Alice computes h2A
= H(IA, A, CB)

8. Alice sends Bob the message {prove(h2A
)}K

9. Bob decrypts the message from Alice and obtains the message
prove(h2A

); Bob verifies whether h2A
(received from Alice) is equal to

any H(IBi
, A, CB), where IBi

∈ IB? (locally computed). If they are
equal, Bob concludes that IA equals the matching IBi , and thereby
verifies that Alice knows the matching IBi (which we will call IB from
here on)

10. If Bob is not willing to prove his knowledge of IB to Alice, Bob sends
Alice the message halt and the protocol is halted

11. (Bob is willing to prove his knowledge of IB to Alice) Bob computes
h2B

= H(IB , N, B, CA)

12. Bob sends Alice the message prove(h2B
)

13. Alice verifies whether h2B
(received from Bob) is equal to

H(IA, N, B, CA) (locally computed). If they are equal, Alice concludes
that IA equals IB , and thereby verifies that Bob knows the matching IA

FIGURE 9.8: The symmetric protocol with encryption.

safe to re-use the nonce that was used to construct the look-up table. However,
for each distinct nonce used, the player still needs to generate such a look-up
table, which is by far the most expensive part of the T-1 protocols.

Therefore, we can improve dramatically on speed if we can find a way to
safely re-use nonces, or to use no nonces at all. The reason to use nonces was
to make sure we have semantic security with respect to any third party ob-
serving the conversation. Semantic security can also be achieved by means of
encryption of some crucial parts of the protocol. The parts that need to be en-
crypted are those of which an eavesdropper could either infer the IB9, or could
verify the proof. To prevent inference of the IB, h1 should be encrypted. To

9 With ‘infer’, we mean ‘properly guess’.

9.4. Correctness Proof in GNY Logic 133

prevent verification of the proof, or the possibility to infer IB by a brute-force
attack, at least one of C and h2 should be encrypted. Since C and h2 are always
sent by opposing players, we may choose to encrypt the one sent by the player
that also sent h1, which is the player that initiated the protocol. Thus only the
initiator needs to be able to send encrypted messages.

The adjusted (‘elaborate’) versions of the T-1 protocol are shown in Figures
9.6 (the verifier initiates), 9.7 (the prover initiates), and 9.8 (mutual proof).

By using encryption and no nonce (or a constant nonce), any responding
player of the protocol needs to generate the look-up table only once. The need
to establish a common nonce is no longer there, but the need for key exchange
has come in its place. Since the protocol requires authentication, it may well be
that key exchange is required anyway.

9.4 Correctness Proof in GNY Logic

In the remainder of this chapter, we will use GNY logic10 to prove the T-1 pro-
tocols correct. To be precise, we will prove correct the configuration where
the verifier initiates and no encryption is used (depicted in Figure 9.1). The
configurations in which the prover initiates the protocol and where a mutual
proof is exercised do not shed new light on the security analysis of the proto-
cols. The proofs for these configurations can be obtained by slight adaptation
of the proof for the configuration where the verifier initiates. The proof for the
‘elaborate’ version where encryption is used is very similar to the proof for the
‘simple’ version where no encryption is used. Therefore, we will only analyze
the simple version.

Our proof uses knowledge preconditions, a special type of assumptions. These
are explained in Section 9.4.1. The GNY idealization of the protocol and the
precise protocol claims are given in Section 9.4.2. Then, in Section 9.4.3, we give
an analysis of the protocol without encryption up to the point where the newly
introduced inference rule H2 is needed. A discussion on how to complete the
proof, including the proof completion itself, is shown in Section 9.4.4.

In Section 9.1, it has been noted that the communication channel should
be authenticated and cannot be modified by an adversary. The most impor-
tant prerequisite is that the last message of the protocol is clearly bound to its
sender, more precisely that the receiver can verify who is the sender. For our
protocols, it is not really relevant in what way this authentication is established.
To keep the proofs of the protocols as simple as possible, we simply assume a
specific way of authentication of the sender. We choose a public-key signa-
ture for this. This choice is not essential and if we change this authentication
method, the protocol proofs can easily be adjusted to reflect this.

It may seem counter-intuitive to prove a protocol that does not use encryp-
tion to be correct by assuming signatures, which essentially is a special case of

10 GNY logic is summarized in Appendix B; our extension of GNY logic is explained in Chapter 6,
and authentication logics in general are extensively explained in Chapter 4.

134 Chapter 9. 1-to-many Protocols (T-1)

encryption. However we would like to stress that this is just the easiest way to
prove the protocol correct. The issue is that we do not have to assume encryp-
tion for our protocols to work, but only sender authentication.

9.4.1 Knowledge Preconditions

A knowledge precondition is a special type of protocol assumption. First of all,
it is an assumption which states that a particular principal has certain positive
knowledge11. Moreover, a knowledge precondition is a neccessary condition
for a protocol to end in an accepting state. For some protocols, it is useful to
distinguish certain knowledge preconditions from the other protocol assump-
tions in order to analyse the protocol. This is because whether the protocol
ends in in an accepting state should coincide with the conjunction of all distin-
guished knowledge preconditions. In the analysis of the T-1 protocol we use
knowledge preconditions.

In the T-1 protocol, an accepting state is a state in which the verifier is con-
vinced of the knowledge of the prover, i.e., the verifier accepts. The knowledge
preconditions of the T-1 protocol are that both the verifier and the prover know
the secret. Thus, a correctness proof of the T-1 protocol in GNY logic (or more
precisely, a derivation of the accepting protocol state) should critically depend
on the truth value of the knowledge precondition. Any unsatisfied knowledge
precondition should result in the impossibility of a GNY derivation of the ac-
cepting protocol state. This kind of proof requires a completeness assumption12

about cryptographic hash functions.13 Also, correct inference rules for cryp-
tographic hash functions are required, most notably inference rule H214. Our
completeness assumption is:

The rules P4, I3 and H2 capture all relevant properties of crypto-
graphic hash functions.15

One of the major issues of the T-1 protocols is whether the prover can cheat
by asking someone else to compute the proof in name of the prover, and just
forward this proof. Making someone different from the prover compute the ac-
tual proof can be achieved by either a successful man-in-the-middle attack by
the prover, or by a willing assistant of the prover which does have the knowl-
edge referred to in the knowledge precondition. We should design protocols in
such a way that successful man-in-the-middle attacks do not exist. Authenti-
cation logics such as GNY logic help in analyzing the existence of such attacks.
However, we cannot fight willing assistants of provers. In some sense, this is
also unnecessary, since the goal of the secret prover protocols is to test whether
the prover has effective access to the secret, and one may reasonably claim that

11 That is, a knowledge precondition cannot be of the form ‘principal A does not know X’.
12 Completeness assumptions are introduced in Section 6.1.2 (page 70).
13 Cryptographic hash functions are extensively explained in Chapter 3.
14 Rule H2 is introduced in Section 6.2.1 on page 74.
15 The rules P4 and I3 are introduced in Appendix B.2, on page 185.

9.4. Correctness Proof in GNY Logic 135

the prover indeed has such access if she has an assistant who will perform
computations on the secrets on behalf of the prover.

The T-1 protocols are protocols that by design should fail to complete if the
knowledge precondition is not true at the start of a protocol run. Normally
in GNY logic a protocol is proven correct if we can infer the desired end state
using the assumptions, inference rule and communication steps. However, for
a protocol to fail if an assumption is not met, means there should not exist
proofs that do not depend on the critical assumptions. This leads to the pos-
sibly somewhat counterintuitive observation that some GNY correctness proofs
prove the incorrectness of a protocol. Exactly the proofs that do not depend on
all the knowledge precondition assumptions indicate that a protocol is incor-
rect. We call these proofs invalidators. Non-existence of invalidators can only
be proven if we make a completeness assumption: we assume that we know
all applicable inference rules, or at least all rules that can lead us to a proof of a
protocol (some of which may be invalidators).

It should be noted that the absence of invalidators does not prove correct-
ness of a protocol in a strict sense. Just as with normal authentication logics, it
only shows that the protocol has passed a test of some not-so-obvious flaws.

9.4.2 Claims and GNY Idealization

In the T-1 protocol we have two participating principals, V the Verifier and
P the Prover. We assert that, for any I , our protocols satisfy the following
properties:

1. ‘The verifier learns whether P knows I , iff the verifier knows I and the
prover wants to prove her knowledge of I’:
V |≡ P 3 I holds after the protocol run ⇐⇒

P 3 I and V 3 I hold before the protocol run,
and P wants to prove possession of I before the protocol run.

2. ‘Only the verifier learns whether anybody knows I by means of the pro-
tocol’:
For any principal Q, except V :

(a) Q |≡ P 3 I holds after the protocol run ⇐⇒
Q |≡ P 3 I holds before the protocol run.

(b) Q |≡ V 3 I holds after the protocol run ⇐⇒
Q |≡ V 3 I holds before the protocol run.

3. ‘Nobody learns I by means of the protocol’:
For any principal Q,
Q 3 I holds after the protocol run ⇐⇒

Q 3 I holds before the protocol run.

Here we should mention that all right-hand sides of the assetions should
include ‘or . . . learns X by messages outside of the protocol’, where X respec-
tively reads I (1), P 3 I (2a), Q 3 I (2b), and I (3). Of course, a principal may

136 Chapter 9. 1-to-many Protocols (T-1)

knowledge preconditions
A.1 P 3 I
A.2 V 3 I

assumptions
A.3 P 3 P A.5 P 3 −K A.8 V 3 C A.10 P 3 N
A.4 V 3 P A.6 V 3 +K A.9 V |≡](C) A.11 V 3 N

A.7 V |≡+K7→ P

the protocol itself
1 V → P : H(I,N), C
2 P → V : {H(I,N, P,C)}−K

claims See section 9.4.2

FIGURE 9.9: GNY idealization of the T-1 protocol where the verifier initiates
and no encryption is used. The formal GNY language used is explained in
Appendix B.

learn something by a message outside of the protocol. Learning in such a way
has nothing to do with any property of the protocol, as it certainly not learned
by means of the protocol.

We will prove these properties for the T-1 protocol where the verifier initi-
ates and no encryption is used. The GNY idealization of this protocol is given
in Figure 9.9. The ⇐ part of property 1 will be proven in sections 9.4.3 and
9.4.4. The ⇒ part of property 1 and property 3 will be proven in Section 9.4.5.
Proving property 2 requires us to make some assumptions on the beliefs and
possessions of an attacker. This will be done in Section 9.4.6.

9.4.3 The Easy Part of the Proof

With the GNY idealization given in Figure 9.9, we can analyze the T-1 protocol
in a rather straightforward way. The first step is to apply the protocol parser
to the idealized protocol, shown in Figure 9.10. As discussed in Sections 4.3
and 6.2.2, this gives for every communication step (step transition) in the pro-
tocol two statements. The first statement asserts that the sender possesses (can
construct) the message he is sending, the second statement asserts what the
receiver will see when he receives the message.

The protocol assumptions are given in Figure 9.9. Assumptions A.1 and
A.2 express that the principals do indeed know the secret. Thus, these are the
knowledge preconditions. Assumptions A.3 and A.4 reflect that both princi-
pals know the identity of P . Assumption A.5 expresses that the prover knows
her private key, and assumption A.6 expresses that the verifier knows the cor-
responding public key. Assumption A.7 reflects that the verifier believes this
public key indeed corresponds to the prover’s private key. Assumptions A.8
and A.9 reflect respectively that the verifier knows his own challenge and that

9.4. Correctness Proof in GNY Logic 137

protocol sender possession receiver learning
step (precondition) (postcondition)

1 V 3 (H(I,N), C) P C (∗H(I,N), ∗C)
2 P 3 {H(I,N, P,C)}−K V C ∗{∗H(I,N, P,C)}−K

FIGURE 9.10: The output of the protocol parser for the T-1 protocol where the
verifier initiates and no encryption is used.

the verifier believes its freshness. Assumptions A.10 and A.11 reflect that both
principals know the nonce.

Just using these assumptions we can already infer a few lines which will be
needed later on in the protocol. Namely the verifier can send message 1 of the
protocol, and he can verify message 2 which the prover ought to send.

B.1 V 3 (I,N) P2(A.2, A.11)
B.2 V 3 H(I,N) P4(B.1)
B.3 V 3 (H(I, N), C) P2(B.2, A.8)
B.4 V 3 (I,N, P,C) P2(A.2, A.11, A.4, A.8)
B.5 V |≡](I,N, P,C) F1(A.9)
B.6 V 3 H(I,N, P,C) P4(B.4)
B.7 V 3 H(H(I, N, P,C)) P4(B.6)
B.8 V |≡ φ(H(I,N, P,C)) R6(B.7)

Now we start the actual protocol. The verifier sends a message to the
prover. Thus, the verifier learns nothing new yet. The prover, however, can
calculate the proof which she will send later on in message 2. The conveyed
message is shown in line C.1.

C.1 P C (∗H(I,N), ∗C) [1](B.3)
C.2 P C ∗H(I,N) T2(C.1)
C.3 P C ∗C T2(C.1)
C.4 P C C T1(C.3)
C.5 P 3 C P1(C.4)
C.6 P 3 (I,N, P,C) P2(A.1, A.10, A.3, C.5)
C.7 P 3 H(I,N, P,C) P4(C.6)
C.8 P 3 {H(I, N, P,C)}−K P8(A.5, C.7)

The justification of line C.1 may require some explanation. On line C.1, it is
reflected that the recipient of the first message in the protocol learns the mes-
sage. The statement on line C.1 corresponds with the ‘receiver learning’ part of
message 1 in the output of the protocol parser (Figure 9.10). The justification
B.3 corresponds with the ‘sender possession’ part of message 1 in the output of
the protocol parser.

9.4.4 Different Options to Complete the Proof

So far, the protocol analysis is plain and rather simple. Completing the proof
from here on is not as straightforward as the easy part shown above. We will
provide three options to complete the proof. The first two options are flawed,

138 Chapter 9. 1-to-many Protocols (T-1)

and we will explain why. The third option we present is the ‘correct one’: it is
not flawed.

1. There is a way to prove correctness in GNY logic of this protocol without
introducing new inference rules. In that case, a rather appealing but weak
assumption would have to be added:

A.12 V |≡ V
N↔ P

This assumption states that V believes that only V and P know the se-
cret N . Using this assumption, the proof goes as follows. The conveyed
message is shown in line D.1.

D.1 V C ∗{∗H(I,N, P,C)}−K [2](C.8)
D.2 V C {∗H(I,N, P,C)}−K T1(D.1)
D.3 V C ∗H(I,N, P,C) T6(D.2, A.6)
D.4 V |≡ P |∼ (I,N, P,C) I3(D.3, B.4, A.12, B.5)
D.5 V |≡ P 3 (I,N, P,C) I6(D.4, B.5)
D.6 V |≡ P 3 I P3(D.5)

Note that in this proof, neither the identity of P , nor P ’s signature are
used. Though the above proof is a correct GNY logic proof, it does not
help us because it depends on assumption A.12. This assumption es-
sentially states that the verifier should trust the prover on not disclosing
the secret to someone else, since the verifier has no control over the truth
value of this assumption. If the prover does disclose the secret, this opens
up possibilities for a successful man-in-the-middle attack: the prover can
use the same nonce with multiple different principals, and use a proof
given by some principal Q to prove to principal V that she knows the
secret, as long as the verifier V ‘knows the name of Q’ (V 3 Q).

To see the man-in-the-middle attack easier, observe that a protocol which
does not include the identity of P would have a virtually identical anal-
ysis in GNY logic. Even without V 3 Q, a verifier could be deceived in
such a simplified protocol.

2. In order to prove correctness without relying on assumption A.12, we
need new inference rules. In Section 6.2.1 we have discussed various
rules, and we will apply them here. Using rule H1, we can finish the
protocol proofs. The proof is as follows:

D’.1 V C ∗{∗H(I,N, P,C)}−K [2](C.8)
D’.2 V C {∗H(I,N, P,C)}−K T1(D’.1)
D’.3 V C ∗H(I,N, P,C) T6(D’.2, A.6)
D’.4 V |≡ P |∼ (I,N, P,C) H1(D’.3, B.4)
D’.5 V |≡ P 3 (I,N, P,C) I6(D’.4, B.5)
D’.6 V |≡ P 3 I P3(D’.5)

Note that in this proof, P ’s identity is not used. As discussed in Sec-
tion 6.2.1, rule H1 is dubious.

9.4. Correctness Proof in GNY Logic 139

B.1 V 3 (I, N) P2(A.2, A.11)
B.2 V 3 H(I,N) P4(B.1)
B.3 V 3 (H(I,N), C) P2(B.2, A.8)
B.4 V 3 (I, N, P,C) P2(A.2, A.11, A.4, A.8)
B.5 V |≡](I,N, P,C) F1(A.9)
B.6 V 3 H(I,N, P,C) P4(B.4)
B.7 V 3 H(H(I,N, P,C)) P4(B.6)
B.8 V |≡ φ(H(I,N, P,C)) R6(B.7)
C.1 P C (∗H(I, N), ∗C) [1](B.3)
C.2 P C ∗H(I,N) T2(C.1)
C.3 P C ∗C T2(C.1)
C.4 P C C T1(C.3)
C.5 P 3 C P1(C.4)
C.6 P 3 (I,N, P,C) P2(A.1, A.10, A.3, C.5)
C.7 P 3 H(I,N, P,C) P4(C.6)
C.8 P 3 {H(I,N, P,C)}−K P8(A.5, C.7)
D”.1 V C ∗{∗H(I,N, P,C)}−K [2](C.8)
D”.2 V C {∗H(I,N, P,C)}−K T1(D”.1)
D”.3 V C ∗H(I,N, P,C) T6(D”.2, A.6)
D”.4 V |≡ P |∼ ∗H(I,N, P,C) I4(D”.2, A.6, A.7, B.8)
D”.5 V |≡ P |∼ (I,N, P,C) H2(D”.4, B.4)
D”.6 V |≡ P 3 (I,N, P,C) I6(D”.5, B.5)
D”.7 V |≡ P 3 I P3(D”.6)

FIGURE 9.11: GNY proof of the T-1 protocol where the verifier initiates and no
encryption is used.

3. Using the well-justified rule H2 from Section 6.2.1, we can also finish the
protocol proofs. The proof is as follows:

D”.1 V C ∗{∗H(I,N, P,C)}−K [2](C.8)
D”.2 V C {∗H(I,N, P,C)}−K T1(D”.1)
D”.3 V C ∗H(I,N, P,C) T6(D”.2, A.6)
D”.4 V |≡ P |∼ ∗H(I,N, P,C) I4(D”.2, A.6, A.7, B.8)
D”.5 V |≡ P |∼ (I, N, P,C) H2(D”.4, B.4)
D”.6 V |≡ P 3 (I, N, P,C) I6(D”.5, B.5)
D”.7 V |≡ P 3 I P3(D”.6)

Note that changing this proof to use rule H3 is trivial: P only needs to
insert “I know” into its signed messages, and V only needs to verify that
this token is indeed present in the message.

Thus, the whole GNY proof of the T-1 protocol is as in Figure 9.11. If we ob-
serve that the prover will only engage in the protocol if he wants to prove pos-
session of i, we have proven the ⇐ part of property 1 (stated in Section 9.4.2).

140 Chapter 9. 1-to-many Protocols (T-1)

9.4.5 Proving principals do not learn too much

So far, of the properties stated in section 9.4.2, we have only proven the⇐ part
of property 1. In this section, we will prove the the ⇒ part of property 1, and
we will prove property 3.

1. ‘The verifier learns whether P knows I , iff the verifier knows I and the
prover wants to prove her knowledge of I’,⇒ part: We assume V |≡ P 3
I holds after the protocol run (the verifier has been convinced of prover’s
possession of I).

For the prover to be able to actually prove possession of I , she has to use
it while constructing message 2. If she does not possess I , she cannot sat-
isfy step C.6, which is necessary for C.8, which states message 2. This is
because the only way in which the prover can obtain C.7 is by application
of inference rule I3.16 Thus, P 3 I holds before the protocol run.

If the prover would not want the verifier to possibly learn that the prover
knows I , the prover would not have sent message 2. Thus, the prover
wants to prove her knowledge of I .

For the verifier to be able to verify the proof, he has to possess I as well.
More specifically, the verifier has to verify whether the message he sees
in line D”.3 (or equivalently, in D.3 or D’.3) equals the value the verifier
computed at line B.6.17 Thus, V 3 I holds before the protocol run.

2. ‘Nobody learns I by means of the protocol’: We prove this by contra-
diction. Let us assume that principal Q does learn I by means of the
protocol, and that by analyzing messages Q managed to reconstruct I . I
itself is never conveyed except as an argument to a one-way hash func-
tion. Thus, Q managed to invert a one-way hash function. Obviously,
this is impossible.

In GNY logic, this is reflected in the inference rules of our completeness
assumption (P4, I3 and H2): in every rule in which something is inferred
from a term which involves a term of the form H(X) (i.e., rules I3 and
H2), the principal that learns something by means of the inference rule,
must possess X as a condition for the inference rule to apply18.

16 See also the completeness assumption about cryptographic hash functions on page 134.
17 Note that this protocol does not depend on the recognizability constraint of rule I4, as used

in line D”.3 of the last proof. Even if the verifier can always recognize the message sent by the
prover, as needed for verification of the signature, the verifier still cannot verify the proof, as
the verifier has nothing to compare the message with. If we change the protocol to use rule
H3, introduction of the “I know”-token will lead to immediate recognizability of the signed
message. This will not invalidate the proof.

18 In rule I3, P learns something as a result of observing H(X, S), but only if P 3 (X, S) is also
satisfied, i.e., if P knows the protected secret already. Similarly, in rule H2, V learns something
as a result of believing P conveyed H(X, P), but only if V 3 (X, P) is also satisfied, i.e., if V
knows the protected secret already. Note that the principal names P and V in the rules I3 and
H2 do not only apply to the principals P and V in the protocol, but to any principal.

9.4. Correctness Proof in GNY Logic 141

Except that the protocol works, it is also very efficient. Both the verifier
and the prover only need to perform a constant number of steps. The prover
will, upon seeing ∗H(I,N), look whether she has a matching secret I . Only
after establishing that she actually does, she will start further computations.
The bottleneck of course is recognizing an I which matches the sent H(I,N).
A principal can in fact generate a look-up table in advance, which stores for
each possible I the corresponding H(I,N) value. This is a one-time operation
whose cost is proportional to the total size of all secrets that a player wants
to be able to look up. This has to be done for each value of N the principal
is interested in. If however the protocol which uses encryption is used, this
dependency on N disappears.

9.4.6 Modeling the beliefs and possessions of an attacker

In the previous section we have shown that no principal can learn I itself from
observing the protocol. However, we are also interested in anything that an
eavesdropper could learn. Could an eavesdropper become convinced that the
prover or the verifier knows I? This is what property 2 of section 9.4.2 is about.
Or, less bad but still undesirable: could an eavesdropper learn about what
secret I the protocol is run if she already knows the secret herself?

Let us assume that, at the start of the protocol, Eve the eavesdropper knows
everything the participating principals know, except P ’s private key, the nonce
N and the challenge C, but including the secret I :

E.1 E 3 I E.3 E |≡+K7→ P E.5 E |≡](C)
E.2 E 3 +K E.4 E 3 P

In the course of the protocol, E will learn both {H(I, N, P,C)}−K , C and
H(I,N). Since Eve does not know N , she will never be able to infer what secret
I the protocol is run about, since in all messages where I is communicated, it
is ‘mixed’ with N in a one-way hash function. For the same reason Eve cannot
verify P ’s proof. Thus, all three values Eve learns are indistinguishable from
random noise (as per the random oracle model, see Section 3.3). In the case of
the protocol that uses encryption instead of a nonce, E will learn {H(I), C}+K

and {H(I, P, C)}−K . E cannot decrypt the first message, and therefore never
learns C, which is needed to be able to interpret {H(I, P, C)}−K .

An eavesdropper knowing everything except private keys and the shared
nonce does not learn anything sensible from observing the protocol. This is a
strong result. One of its implications is that N may be known to any princi-
pal who is either (1) trusted by the verifier, or (2) not capable of intercepting
messages from or to any principal using the nonce N .

One last question is whether one of the participants could be a passive at-
tacker. In that case, the attacker would also possess N . For the case the attacker
is the verifier, the proof is trivial, since the goal of the protocol is that the ver-
ifier does learn. For the case where the attacker is the prover, the prover will
indeed learn what secret the protocol is about. However, the prover will not
learn whether the verifier really possesses I : the verifier might have learned

142 Chapter 9. 1-to-many Protocols (T-1)

H(I,N) from someone else.

9.5 Conclusion

In this chapter, we have presented our T-1 protocol. Let us return to Victor, the
secret agent who wants to protect Peggy from great danger (the story which
opened this chapter, page 123). Peggy is invited by Mallory, but will get killed
by Mallory if she accepts the invitation. Peggy is reluctant to disclose the invi-
tiation to Victor. Let us see how the T-1 protocol handles this situation.

1. How do Victor and Peggy make sure the invitation is not disclosed in case the
other does not know of the invitation?
Peggy and Victor only send cryptographic hash values of the invitation.
From a cryptographic hash value, one cannot infer the pre-image (Sec-
tion 3.2). Thus, nobody can learn the invitation from the communicated
messages.

2. How do Victor and Peggy establish about what secret they are communicating?
Victor sends Peggy the cryptographic hash value of the invitation I . If
Peggy knows the invitation, she recognizes the hash value.

3. How does Victor become convinced of Peggy’s knowledge of the invitation?
Victor asks Peggy to present a cryptographic hash value of the invitation
and a challenge C chosen by Victor. Only if Peggy has the invitation, she
will be able to construct the requested cryptographic hash value.

4. How is a man-in-the-middle attack prevented?
In the pre-image of the hash value that must convince of possession, the
identity of the prover must be incorporated.

In a man-in-the-middle attack, Peggy would try to deceive Victor by ini-
tiating a concurrent protocol with someone else (say, Cecil) and passing
the messages from Cecil to Victor.

If Peggy sends Cecil’s messages to Victor, these hash values will be con-
structed with Cecil’s identity, and not Peggy’s. Victor expects hash values
in which Peggy’s identity P has been incorporated. He can detect it if this
is not the case. Thus, if Peggy mounts a man-in-the-middle attack, Victor
will not be convinced.

5. How do Peggy and Victor make sure that eavesdroppers cannot learn anything
from the protocol?
There are two solutions:

• They use a commonly agreed, secret nonce N , which is incorporated
into every pre-image before the hash is computed. As the eaves-
dropper does not know the nonce, the eavesdropper cannot learn
anything.

9.5. Conclusion 143

• They use encryption to hide the hash values from which the eaves-
dropper could learn something.

6. What if one of the principals does not know the invitation?

In that case the ignorant principal sees bits which he/she cannot distin-
guish from random noise. The ignorant principal may continue the pro-
tocol, but will not convince the other principal.

7. What if not Victor, but Peggy wants to initiate the protocol?

In that case, Peggy sends the first message of the protocol. All configura-
tions of the protocol are listed in Figures 9.1–9.3 (using a nonce N), and
Figures 9.6–9.8 (using encryption).

8. What would an actual protocol run look like, if we omit all the technicalities?

Look at Figure 9.4 on page 129.

The T-1 protocol is proven correct in our extended version of GNY logic.19

The T-1 protocol works for knowledge authentication20 in the 1-to-many case:
where one of the principals ‘points at’ a secret, and the other principal looks
whether he/she knows the same secret. In the next chapter, the T-1 protocol is
generalized to the many-to-many case.

19 GNY logic is summarized in Appendix B, and our extensions are explained in Chapter 6.
20 Knowledge authentication is introduced in Chapter 8.

