
Chapter 8

The question ‘do you know the secrets that I
know?’ is a tricky one. We explore what a

protocol must do in order to provide an answer to
such questions. We distinguish the 1-to-many

case and the many-to-many case, and survey
protocols which solve these cases. There are no
protocols in the literature yet which solve these

cases where the domain of possible secrets is huge,
except for the protocols (T-1 and T-2) we will

present in the next chapters.

Knowledge Authentication

We will introduce the objective of the material presented in this chapter by a
rather innocent real-world situation which has actually occurred:

Geertje and Wouter are two friends and colleagues. Geertje has told
Wouter in private that she is expecting a baby.1 Just a few days later,
Wouter meets the secretary at the coffee corner. The secretary looks
expectantly to Wouter. Wouter would like to gossip with the sec-
retary about Geertje’s pregnancy. But Wouter has also promised
Geertje not to disclose the secret of her pregnancy. If Wouter wants
to keep his promise, he can only start gossiping about Geertje’s
pregnancy if he can be certain that the secretary already knew the
secret. Wouter cannot simply ask the secretary whether she knew,
because such a question would disclose the secret.

Similarly, the secretary might know the secret, and could also have
promised not to disclose the secret. In the case that both the secre-
tary and Wouter know the secret, they are allowed to gossip.2

Is there a strategy for the secretary and Wouter that enables them to mu-
tually establish whether they know of Geertje’s pregnancy without disclos-
ing this secret? The answer is yes. We will call protocols that solve this type
of problem protocols for knowledge authentication: authentication based on the
knowledge of an actor — instead of based on the identity or role of the actor.

Protocols for knowledge authentication can be used to grant somebody access
to confidential information based on his or her knowledge, instead of (only)

1 The baby was born on May 24, 2004. Her name is Marloes and she is really cute.
2 Of course, they should make sure not to be overheard, and the coffee corner is probably not the

best location for not being overheard.

101

102 Chapter 8. Knowledge Authentication

based on his or her identity and role.3 In the above example, successful au-
thentication grants access to quotes and sentences which should be described
as ‘gossip’.

In this chapter, we will precisely define the the fundamental problem that is
exemplified in the above story. We will survey and categorize what solutions
for this problem exist in the literature. In Chapters 9 and 10, we will present
our solutions to this problem, which are more general and more efficient than
all existing solutions.

8.1 Application Areas of Gossip

The desire to gossip may be an interesting occasion to devise protocols and
touch upon fundamental research issues, but the application areas of the pro-
tocols defined in this chapter reach further than the social talk at the coffee cor-
ner. We will present two application areas where ‘cautious gossip’ has valuable
applications.

8.1.1 Police Investigations

The situation that initiated the design of protocols for knowledge authentication
has been arguably a more important than coffee corner gossip:

When a research team of the police performs an investigation on
some crime, they register the people who are victims, the people
who are witnesses, and the people who are suspects. If two inde-
pendent crimes are investigated, it may be the case that somebody
is suspect of two independent criminal acts. If the research teams of
the two crimes do not communicate, they can easily harm one an-
other’s research. For example, one research team may be shadow-
ing the suspect, and the other team may want to arrest the suspect.
If the research teams do not communicate, it can be expected that
something will go wrong in at least one of the investigations.

How can a research team know that some other research team is
investigating the same person?

One solution for this police problem could be that the police has an or-
ganization-wide notice board on which all victims, witnesses and suspects are
listed. The current solution in the Dutch police4 is not very much unlike this
one: a police officer can enter a name in the computer, and will get a list of
research teams investigating the person.

3 This should not be confused with protocols for private authentication [AF04], which are protocols
where the identity of a principal is only proven to a restricted set of possible communication
partners.

4 See Section 1.5 for a detailed description of the current solution in the Dutch police.

8.1. Application Areas of Gossip 103

The Dutch police has thousands of criminal investigators. All of these in-
vestigators have made an oath which morally binds them to righteous behav-
ior. The sheer number of police investigators entails that one can be sure that at
least some of them will be corrupt and malicious. Thus, an organization-wide
notice board that can only be consulted by officers who have made an oath is
not a good solution; just a few corrupt officers who leak the information on the
notice board can be enough to help some criminals escape the fate they deserve
by law.5

It is justified to say that the organization-wide notice board is not the source
of the problem, but that the few corrupt police officers are the source of the
problem. If one is interested in addressing the problem of corrupt police of-
ficers, one should of course always tackle the problem at its root: hunt down
and eliminate corrupt officers. It would not be realistic to believe that hunting
down corrupt officers will be a 100% effective. Therefore, some measures have
to be taken to limit the negative impact that corrupt police officers can have.

A first step in limiting the negative impact that corrupt police officers can
have, is to prevent ‘frivolous queries’, that is, to prevent queries for which there
does not exist a need to know. Of course, the need to know is something which is
often hard to operationalize precisely. But even if it is only operationalized in a
rough, simplistic way, such that only obvious violations are detected, it already
limits the impact of corrupt police officers.

A simple operationalization of need to know which dramatically limits the
frivolous queries of the thousands of researchers: only queries are allowed on
names which occur in the electronic dossier the researcher is working on.6

There are also police officers which operate the organization-wide notice
board, and if the information is stored unencrypted on the notice board7 these
operators will still be able to perform frivolous queries at will.

As long as the software that is running the notice board needs access to
unencrypted data, the operators will have a means to access the unencrypted
data. However, when the software that operates the notice board does not
need access to unencrypted data to match electronic dossiers, it is possible to
prevent frivolous access by malicious operators. When protocols for knowledge
authentication are applied, notice boards do not need unencrypted data.

8.1.2 The Passenger Name Record

The best known application area where protocols for knowledge authentication
can help is the airline passenger data (the so-called passenger name record or
PNR). In 2003, in response to the events on 9/11, the United States of America

5 There have been major leaks in the Dutch police organization, as Dutch top-criminals like Mink
Kok have possession of various classified police documents. The police has a hard time identi-
fying the corrupt police officers (various newspaper media, 2006).

6 Such an operationalization has to be enforced by the software which is used to manage the
electronic dossier.

7 Or equivalently: it is stored encrypted, but the operators have access to the decryption key.

104 Chapter 8. Knowledge Authentication

mandated that all airline carriers release the PNR to the Department of Home-
land Security (DHS) for all flights from, to, and over US territory:

The DHS has a ‘terrorist list’ of people they do not wish close to
US territory. When an airplane wants to enter US airspace and it
carries one or more people who are on the ‘terrorist list’, it is re-
fused access.8 Understandably, the DHS does not want to disclose
its terrorist list; such a disclosure would give an unnecessary ad-
vantage to terrorists. Al Qaeda would precisely know which of its
combattants would be granted access to the US, and which not.

The airline carriers, on the other hand, are not automatically in-
clined to release the PNR to the DHS. The information has been
collected for commercial purposes, and not for security purposes.
Release of the PNR would result in infringement on the privacy of
innocent citizens. The European Data Protection Directive forbids
the release of this information. This resulted in a circus of lawsuits
and negotiations.9

Can the airline carriers and the DHS compare their lists of pas-
sengers and suspected terrorists without mutually disclosing their
lists?

This problem is more intricate than the problem of the police investigation
information, because the airline carriers and the DHS are not subsidiaries of
one larger organization. As such, it will be hard — if not impossible — to find
a trusted third party (TTP) to compare their lists. Thus, a ‘notice board solution’
as with the police investigation information is impossible.

Using protocols for knowledge authentication, it is possible to determine the
intersection of two lists, without disclosing the lists themselves10, without the
need for a TTP.

When we look at the need to know of the DHS, we can observe that it is in
fact very limited. What the DHS needs to know is whether there is a suspected
terrorist on board of an airplane. Strictly taken, the DHS does not even need to
know which terrorist is on board. Importantly, the DHS does not need to know
the identities of the passengers that are not suspected terrorists.

Thus, protocols for knowledge authentication can protect the privacy of inno-
cent citizens who fly from, to, or over the US, while the DHS can still perform
its task.11

8 Remarkably, when a airplane is actually refused access, there is no procedure for a concerted
effort to arrest the suspected terrorist. After the airplane lands outside of the US, the suspected
terrorist is free to travel elsewhere.

9 For an extensive treatment of how the European Union and the US settled their dispute on the
PNR, consult [Hei05].

10 Thus, the items which are on both lists are mututally disclosed, but the items which are only on
one of the lists are kept secret.

11 Using protocols for knowledge authentication the identity of suspected terrorists which are on
board of an airplane is disclosed to the airline carrier, and in this sense the terrorist list is not
kept secret. In the current situation in which the full passenger list is disclosed to the DHS, the

8.2. Comparing Information Without Leaking It and Reference 105

8.2 Comparing Information Without Leaking It
and Reference

Protocols for knowledge authentication are for comparing secrets, without dis-
closing the secrets. We need to be more precise on what we consider to be
‘secret’, and what we mean by ‘comparing without disclosing’. We will make
this more precise in this section.

What constitutes a ‘secret’ is relatively simple. A secret of player Q is a
bit string, generated by player Q, which player Q is not willing to disclose to
others. Whether the bit string can be generated by virtually every other agent
does not alter it being a secret of agent Q. Thus, Q may consider ‘Stalin sent
millions of people to Siberia’ to be a secret, while in fact many people know
this. Moreover, whether the bit string corresponds to something which is true
in the ‘outside world’ is irrelevant: for example, someone may ‘know’ (e.g.
believe) the secret ‘there are weapons of mass destruction in Iraq’.

The careful reader has noted that we use the verb ‘to know’ in a loose way.
In epistemic logic, knowledge is at least as strong as true justified belief.12 When
we use the verb ‘to know’, we technically mean ‘possessing information x,
which may be false’. We use ‘to know’ in this way because knowledge is an
intuitive notion for the examples.

What constitutes ‘comparing without disclosing’ is more complicated. We
will focus on comparing information without leaking it (CIWLI) without reference.
What that is, and how it differs from CIWLI with reference, will be explaind in
the remainder of this section. In zero-knowledge protocols, two players play
a game in which the prover (player one) proves to the verifier (player two)
that the prover has some special knowledge. This special knowledge could be
for example knowing a Hamiltonian tour for a graph, or a password to Ali
Baba’s cave. The verifier (player two) does not possess the special knowledge,
nor does he learn it by means of the protocol. Thus, zero-knowledge protocols
are convincing but yield nothing beyond the validity of the assertion proven
(in the example ‘the prover knows a Hamiltonian tour’) [GMR85, Gol02, BG93,
BFM88].13

The type of knowledge that can be proven in zero-knowledge protocols is
limited to knowledge within a mathematical context: the two players in a pro-
tocol know some x a priori, and the prover proves his knowledge of some spe-
cial object y. The object x may be a public key and y the corresponding private
key, or x may be a graph and y the Hamiltonian tour of it, as in the example.
The required mathematical relation between x and y is, speaking loosely, that
it is NP-hard to compute y from x. It might seem that the requirement of a

terrorist list is not kept secret either, as the airline carrier learns that at least one of the passengers
on board is on the list upon being refused access to US airspace. In practice, the DHS currently
discloses the identity of the suspected terrorists voluntarily to the airline carrier.

12 Beliefs in general may be ungrounded and false. Even the definition ‘true justified beliefs’ has
some problems [Get63].

13 For an introduction to Zero-Knowledge protocols, consult Section 2.8.

106 Chapter 8. Knowledge Authentication

specific mathematical relation between x and y somehow restricts the possible
applications of zero-knowledge protocols.

However, it is also possible to create an NP-hard ‘puzzle’ on the fly to prove
knowledge of any y, provided that the verifier also knows y a priori. If the verifier
does not know y a priori, he does not gain any information which helps him to
compute y. In this thesis we present the first efficient zero-knowledge protocols
in which possession of any kind of knowledge can be proven. The knowledge
need not be special in any mathematical or contextual way.14 The assertion ‘the
prover knows y’ can only be verified if the verifier also knows (all of) y. The
verifier never learns anything more than the prover’s knowledge of y, and not
y itself.

This type of protocols has applications where securely comparing secrets
allows transactions which could not be allowed otherwise. Examples are the
comparison of police information (Section 8.1.1) and the exchange of the PNR
(Section 8.1.2)

For example, secret agents might like to test each other’s knowledge with-
out exposing their own. Many examples can be found where privacy require-
ments or non-disclosure requirements are an obstruction for performing righ-
teous tasks.

The type of problem that our protocols solve is similar to, but different from,
the problem described in [FNW96]. We will first give a description which is
broad enough to cover both problems, after which we will describe the differ-
ence.

By a secret, we mean information possessed by an agent, which the agent is
not willing to share with another agent. Whether other agents indeed possess
this information as well is not relevant for it being considered a secret. Here
follows the problem “Comparing Information Without Leaking It” (CIWLI)15:

Two players want to test whether their respective secrets are the
same, but they do not want the other player to learn the secret in
case the secrets do not match.

Not specified yet is which particular secrets are to be compared, and how it
is decided which particular secrets are to be compared. Do the two players each
take a specific secret into their mind which they compare? For example, is ‘the
person I voted for’ equal to ‘the person you voted for’? Or does one player
take a secret ‘The General will attack tomorrow at noon’ and does the other
player see whether he knows this specific secret as well? In the former case,
the two players first have to agree upon what they want to compare. I call this
CIWLI with reference. In the latter case, no a priori agreement is needed and I
call it CIWLI without reference, because of its lack of an agreement which refers
to a secret.
14 The only requirement is that it can be uniquely encoded in a binary string, which can hardly be

considered a limitation.
15 This is a slight variation from [FNW96, page 78], where it reads “Ron and Moshe would like

to determine whether the same person has complained to each of them, but, if there are two
complainers, Ron and Moshe want to give no information to each other about their identities.”

8.2. Comparing Information Without Leaking It and Reference 107

The difference between CIWLI with reference and CIWLI without reference
can be illustrated with the following two secrets:

with reference ‘I voted for Pim Fortuyn’

This could be a secret because it expresses a stance of the player, which
he may want to keep secret for whatever reason. The reason could be
fundamental (like ‘votes should be secret’) or practical (for example to
prevent embarrassment, like admitting one still likes A BBA music).

without reference ‘arkjjhhg bwr ufkng’

This could be a secret because it might be the access code to a Swiss bank
account where someone keeps his fortune.

CIWLI with reference is symmetric in the sense that both players have a
specific secret in mind while performing the protocol, whereas in CIWLI with-
out reference, only one of the players has one specific secret in mind.16

An example of CIWLI with reference is the Socialist Millionaires’ problem,
in which two players want to test their riches for equality, but do not want to
disclose their riches to the other player [JY96, BST01]. Another example is that
two managers each have received a complaint about a sensitive matter, know
this of one another, and would like to compare whether the complainer is the
same person (without contacting the complainer) [FNW96]. Solutions exist for
CIWLI with reference [FNW96, BST01, JY96]. In [FNW96] a series of interesting
applications is listed where protocols solving this problem could be used.

It could also be the case that it is not agreed upon between the agents what
the secret is about, i.e., that the agents have no particular stance towards the
secret as in CIWLI with reference. In that case, we have CIWLI without ref-
erence. For example, Alice could have a file on her hard disk, and would like
to know whether Bob possesses the same file as well. Alice can not naively
show the file to Bob and ask him to search for a matching file, because this
will obviously result in Bob obtaining the file (though Bob could be honor-
able and delete it voluntarily). In cases of CIWLI with reference, it is common
that two specific secrets are tested for equality, whereas in cases without refer-
ence, one specific secret is tested against numerous secrets for equality. The file-
comparison problem would be a case with reference if the two players would
like to know whether two specific files are equal. (‘Are the instructions you got
from Carol the same as the instructions I got from Carol?’)

Though secrets f(X, Y) can be computed using some very complicated pro-
tocol, what will be the input X (resp. Y) remains under the control of Alice
(resp. Bob). This has been acknowledged already in [Yao82, page 162]:

16 In the field of dymanic epistemic logic, there are riddles about card deals, such as Van Dit-
marsch’s Russian cards problem [vD03]. It may need notice that CIWLI problems are very
different from such card deal problems. Firstly, in CIWLI the number of ‘cards’ is unlimited (or
at least extremely high), and it is not publicly known which ‘cards’ exist. Secondly, in CIWLI
there is no such thing as exclusive possession of a ‘card’.

108 Chapter 8. Knowledge Authentication

“Since a protocol can never prohibit Alice (or Bob) from behaving
as if she had a different variable value X ′ (or Y ′)17, the most that a
protocol can achieve is to make sure that this is the only cheating
that Alice (or Bob) can do.”

In particular, a principal can always refuse to prove possession of some item,
while he or she actually possesses the item. The best a protocol can achieve, is
to prevent the opposite: it ensures that a principal cannot ‘prove’ possession of
an item he does not have.

For CIWLI with reference, this is a larger problem than for CIWLI without
reference. In CIWLI with reference, there is no guarantee that the input of a
player is truthful (e.g., that the player did vote for Pim Fortuyn, or does like
ABBA music). In CIWLI with reference, a commitment is required of both par-
ties that their inputs to the protocol satisfy the reference, i.e., they are truthful.
(For example, in the socialist millionaires’ problem this means that the inputs
correspond to the wealth of the players.) In fact, these protocols can only be
used to test whether the two inputs are equal, and only assuming truthfulness
one can say something about, for example, the riches of the players.

In CIWLI without reference, a successfully proven secret is truthful, because
the ‘truth’ that is proven is the fact that the player can construct the secret (e.g.,
the access code to the Swiss bank account). However, a player can always fake
not possessing a certain file, while he actually does possess the file. A player
can however never fake possessing something which he does not possess (or
only with negligible probability).

In this thesis, we focus on protocols for CIWLI without reference.

8.3 Adversary Models for CIWLI

In CIWLI with reference, it is required that player A cannot infer anything on
the input of player B, in case their inputs do not match. This includes that it
should not be possible for player A to test the input of player B for likely val-
ues, that is to guess and verify whether the guess is correct. This is called se-
mantic security [Yao82, Yao86]18. Semantic security is important in CIWLI with
reference, because what is tested is not whether the other player can imagine
or guess some input [WSI03], but whether he actually states the input. Thus,
cases with reference should withstand guessing attacks (also called dictionary
attacks, see Section 2.1).

In case of CIWLI without reference, there is no need to withstand guessing
attacks of the players. Basically this is because cases without reference test
whether the other player possesses a specific file, which is roughly equivalent
to being able to imagine or guess it within the limits of its storage capacity and
computational resources. In fact, the protocols we present in the next chapters

17 In [Yao82], it says “i′” instead of “X′ (or Y ′)” — WT
18 Informally, an encryption scheme is semantically secure, if ciphertexts leak no information

about the plaintext.

8.4. Possible Set Relations 109

are based on the fact that a player can verify the other player’s knowledge of a
file by correctly ‘guessing’ it. Semantic security is still required in the sense that
if a player cannot guess the complete input of the other player, he should not be
able to infer anything of the input of the other player. And, of course, there
must be full semantic security with respect to eavesdroppers, third persons
other than the two players.

Given these considerations, what adversary models can best be applied?19

In the honest-but-curious adversary model, the principals are supposed to adhere
to protocol specification. Thus, it is assumed that in this model, the principals
do not try to convince other players of possession of items which they in fact
do not possess. They are only secure under the assumption of no cheating. To
let go of this assumption, one has to adopt the malicious adversary model.

In the rest of this chapter and thesis, we will adopt the malicious adversary
model.

8.4 Possible Set Relations

Algorithms for the distributed computation of set relations are tricky. For one
thing, different algorithms may seem to compute the same thing, but in fact
compute something different. Thus, before listing known algorithms, which
we will do in the next section, it should be explained which interesting proper-
ties can be computed given two finite sets. In this section, we will explain what
set relations we distinguish. All sets we consider are finite.

It is easy to characterize the possible relations between two subsets of a
given domain Ω. As a reminder, two sets (each a subset of Ω) can either be:

disjoint, there is no single item that is in both sets,

partially intersecting, at least one item is found in both sets and at least one
item is found in only one of the sets, or

equal, any item found in one set is also found in the other set.

The possible relations between to sets are depicted in Figure 8.1. Note that,
if X = Y = ∅, the sets are both disjoint and equal. Otherwise, the relations are
mutually exclusive. For example, if one determines that A and B are not equal,
one can be sure that A and B are either disjoint or partially intersecting.20

When describing the relation between two sets, partially intersecting de-
serves some extra attention: depending on the application domain, it may or
may not be required to spell out what elements constitute the partial inter-
section. To determine what elements constitute the intersection requires more
computation than to determine whether the intersection is empty or not. To

19 For an introduction to adversary models, see Section 2.6.
20 For a discussion of possible set relations when one also takes the domain of possible items (e.g.

the universe) into account, consult [KM06].

110 Chapter 8. Knowledge Authentication

&%
'$

�
�

�
��

�
�
�

�
�

�

�
�

�

�
�

�

�
�
�

�
���
�

&%
'$

@
@

@
@@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@
@

@@ @
@

X Y

X ∩ Y = ∅
disjoint

&%
'$

�
�

�
��

�
�
�

�
�

�

�
�

�

�
�

�

�
�
�

�
���
�

&%
'$

@
@

@
@@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@
@

@@ @
@

X Y

X ∩ Y 6= ∅, X 6= Y

partially intersect

&%
'$

�
�

�
��

�
�
�

�
�

�

�
�

�

�
�

�

�
�
�

�
���
�

&%
'$

@
@

@
@@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@
@

@@ @
@

X, Y

X = Y

equal

FIGURE 8.1: The relations possible between two sets X and Y .

disjointness Are X and Y disjoint? The answer is either a yes (1) or a no (0).

fdisj :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) → {0, 1} with fdisj(X, Y) = [X ∩ Y = ∅]

intersection Which items are in both X and Y ? The answer is a set.

fint :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) →

<∞
P ({0, 1}∗) with fint(X, Y) = X ∩ Y

intersection cardinality How many items are in both X and Y ? The answer is
a number.

fic :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) → N0 with fic(X, Y) = |X ∩ Y |

equality Are X and Y identical? The answer is either a yes (1) or a no (0).

feq :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) → {0, 1} with feq(X, Y) = [X = Y]

subset inclusion Is X a subset of Y ? The answer is either a yes (1) or a no (0).

fsi :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) → {0, 1} with fsi(X, Y) = [X ⊆ Y]

This is the only relation that does not commute: fsi(X, Y) 6⇔ fsi(Y,X).

FIGURE 8.2: Some interesting set functions for which secure protocols exist.

• Items of sets (the ‘secrets’) are represented as bit strings.
• The set of all possible finite bit strings is represented as {0, 1}∗.
• The finite power set (the set of all finite possible subsets) is denoted as

<∞
P .

• The set of non-negative integers is denoted as N0.
• The cardinality of a set X is denoted as |X|.
• The extension of a set X is denoted as [X].
• If X is a condition, then [X] = 1 if X holds, and [X] = 0 otherwise.

8.4. Possible Set Relations 111

0-to-any At least one set is empty, say X = ∅. This case is not really interesting.
In this case, for any Y , we have

fdisj(X, Y) = 1, fint(X, Y) = ∅, fic(X, Y) = 0, fsi(X, Y) = 1
and feq(X, Y) = [Y = ∅]

1-to-1 Both sets contain only one element. In this case the sets are either dis-
joint, or equal. In this case, we have

fdisj(X, Y) = 0 ⇔ fint(X, Y) = X ⇔ fint(X, Y) = Y

⇔ fic(X, Y) = 1 ⇔ feq(X, Y) = 1 ⇔ fsi(X, Y) = 1

1-to-many One of the sets contains only one element, say X = {M}, and the
other set Y contains more than one element. In this case Y can be disjoint
with X , or partially intersecting. In this case, we have

fdisj(X, Y) = 0 ⇔ fint(X, Y) = X

⇔ fic(X, Y) = 1 ⇔ fsi(X, Y) = 1

many-to-many Both sets contain more than one element. This case is not really
special in the sense that there are not too many correspondences between
the set relations. In this case, we only have

fdisj(X, Y) = 0 ⇔ fint(X, Y) 6= ∅ ⇔ fic(X, Y) > 0

FIGURE 8.3: Special cases of the sizes of two sets.

encode what elements constitute the intersection also requires more bits than
to encode whether the intersection is empty or not.

Now, if one is given two finite sets X and Y , what kind of questions could
one be interested to ask? In Figure 8.2, we list the most useful questions for
which algorithms have been designed, with their formal definition. Without
loss of generality, we assume that an item is modeled as a bit string in {0, 1}∗,
which contains all finite strings21, including the empty string.

In this thesis, we will focus mainly on the intersection question. For more
details on intersection cardinality, consult [FNP04, KS04]. For more details on
subset inclusion, consult [LLM05, KM06]. In [KS04], protocols are described
which determine set relation properties which are only relevant if more than
two sets are involved. For the ease of comparison and discussion, we will only
address the case where the number of sets to be compared is two.22

21 Thus, the interpretation of {0, 1}∗ is that the pattern {0, 1} may be repeated any finite number
of times, but not infinitely many times.

22 For example, in [KS04] threshold intersection cardinality is defined as the function that determines
the set of items that each occur in more than n of the m sets, with n > 2 and m > 2.

112 Chapter 8. Knowledge Authentication

Depending on the sizes of the sets X and Y , four cases can be distinguished.
For some of these cases, the definitions of some of the questions above can
be simplified, and can become the dual of one of the other definitions. Also,
algorithms could be tailor-made for one of these special cases. The first case,
in which one set is empty, is only included for completeness. All four cases are
shown in Figure 8.3.

Clearly, the many-to-many case is the most general one. The most specific
but still interesting case is 1-to-1. For the 1-to-1 case, the questions that can be
asked are interchangeable.

An algorithm for the many-to-many case can be constructed by multiple
runs of a 1-to-many algorithm, and an algorithm for the 1-to-many case can be
constructed by multiple runs of a 1-to-1 algorithm. Usually, these are not the
most efficient solutions. In Chapter 10 we show how we efficiently transform
a protocol for the 1-to-many case into a protocol for the many-to-many case.

The many-to-many case is also called the list intersection problem [NP99]. A
solution for the many-to-many case will make it possible to create indexes on
distributed, secured databases, which can be searched without leaking infor-
mation on the contents of the databases.23

8.5 Secure Protocols for Computing Set Relations

It is not very difficult to create an algorithm that computes the answer to any
single question of Figure 8.2. Also, if X is only known to one principal (Alice),
and Y is only known to the other principal (Bob), protocols answering these
questions are easy to construct. But it is diffucult to construct protocols which
compute the answers to these questions in a secure manner. In this section, we
will give an overview of existing protocols for secure computation of the set
relations. First, we will explain and discuss the properties that these protocols
satisfy. Then, Table 8.1 lists all known, published protocols.

The protocols listed in Table 8.1 satisfy the following properties:24

privacy the inputs X and Y are not mutually disclosed;

validity it is impossible for the principals to cheat without the other player
detecting this;

autarky the principals do not need assistance of a third party; and

efficiency for some set sizes |X| and |Y | the solution is efficient.25

23 This is similar to, but with wider application areas than the approaches in [FLW91, FGR92].
24 The properties privacy, validity and autarky listed here are described in more detail in Sec-

tion 2.7.
25 It would be better if all protocols are efficient for all set sizes |X| and |Y |, but this is not the case.

For some set sizes, some protocols are not even feasible. For an introduction to complexity,
consult Section 2.3.

8.5. Secure Protocols for Computing Set Relations 113

The properties privacy and validity are not easily combined with the prop-
erties autarky and efficiency. Observe that if autarky and efficiency would be
dropped as requirements, there would be a trivial protocol involving a trusted
third party (a TTP): both Alice and Bob privately disclose their inputs X and Y
to the TTP, the TTP computes f(X, Y), and informs Alice and Bob.

The privacy property is tricky in particular with respect to the set sizes of the
inputs (i.e., |X| and |Y |). It is easy to see that if both X and Y contain many
elements, the amount of computation and comparisons required is much larger
than if X and Y contain only a few elements. If it is required that |X| and |Y |
are not disclosed, it cannot be allowed to design the protocol in such a way
that it will take advantage of |X| and |Y | to optimize the communication and
computational complexity: a protocol run would leak |X| and |Y | or at least
some stochastic information on |X| and |Y |. A protocol that does not disclose
|X| and |Y | is essentially a protocol that adds dummy elements to X and Y
(obtaining X ′ and Y ′) such that |X ′| = c and |Y ′| = c for some commonly
agreed upper bound c. Such a protocol only works for sets with at most c
elements, and ‘discloses’ that |X| ≤ c and that |Y | ≤ c. Using such a protocol,
with c = 4·106, comparing two sets each of size 4 is just as expensive as two sets
each of size 4 million. Thus, nondisclosure of |X| and |Y | implies a tremendous
efficiency penalty.26

Protocols satisfying the properties listed in the beginning of this section
are closely related to secure multiparty computation (SMC). In addition, a pro-
tocol for SMC also has to satisfy the fairness property. That is, both principals
learn the outcome of f(X, Y), and they cannot deny the other the outcome of
f(X, Y) without denying it oneself. The BST protocol (listed in Table 8.1) can
be transformed into a fair protocol [BST01].

There is also a close relation to zero-knowledge proofs. If either the set sizes
are a priori known to both participants, or the protocols do not leak the set
sizes, the protocols can be considered zero-knowledge proofs.

Normally, in zero-knowledge proofs, it is tacitly assumed that the prover is
convinced of the truth of the assertion he tries to prove. There is conceptually
nothing wrong with trying to prove an assertion of which one does not know
the truth value. Proving that ‘I know what you know’ is a very good example
of this: the prover may not know the knowledge of the opponent, but can
nevertheless engage in a protocol. Whether the run of this protocol yields a
convincing proof depends on the knowledge of the verifier. Moreover, it is
not necessary that the knowledge of the verifier is known to the prover, of
course. Also, after running the protocol, the prover does not know whether
the assertion proven was in fact true, or whether the proof was convincing. In
[JY96], Jakobsson and Yung have introduced the concept of an oblivious prover
which applies well to this situation. An oblivious prover is a prover who does
not know the truth value of the assertion he tries to prove.

Now that the most important properties have been described, we are ready

26 This has also been observed in [KM05]. Moreover, [BCC88, page 157] contains a hint to this
matter: “However, Vic is not given a clue [. . .] (except perhaps for an upper limit on its length).”

114 Chapter 8. Knowledge Authentication

nam
e

reference
case

com
putes

adversary
m

odel
com

m
unication

com
plexity

dom
ain

com
pression

FN
W

27
[FN

W
96]

1-to-1
equality

28
various

various
no

JY
[JY

96]
1-to-1

equality
28

m
alicious

ln
|Ω
|

no
BST

[BST
01]

1-to-1
equality

28
m

alicious
ln
|Ω
|

no
N

P-1
[N

P99]
1-to-m

any
intersection

29
m

alicious
|Y
|·ln

|Ω
|

no
T-1

C
hapter

9
1-to-m

any
intersection

29
m

alicious
1

yes
K

M
-1

30
[K

M
05]

any
disjointness

honest-but-curious 31
|Ω
|·ln

|Ω
|

no
K

M
-2

30
[K

M
05] 32

any
disjointness

honest-but-curious 31
|X
|·|Y

|·ln
|Ω
|

no
K

M
-3

30
[K

M
05] 32

any
disjointness

honest-but-curious 31
(|X

|+
|Y
|

|Y
|)·ln

|Ω
|

no
K

M
-4

[K
M

06]
any

disjointness
honest-but-curious 31

(|Ω
|−

|X
|)·ln

|Ω
|

no
N

P-2
[N

P99]
any

intersection
m

alicious
(|X

|+
|Y
|)·ln

|Ω
|

no
A

gES-1
33

[A
ES03]

any
intersection

honest-but-curious
|X
|+

|Y
|

yes
FN

P-1
[FN

P04]
any

intersection
honest-but-curious

|X
|·ln

|Ω
|

no
FN

P-2
[FN

P04]
any

intersection
m

alicious
unclear

no
K

S-1
[K

S04]
any

intersection
honest-but-curious

|X
|·ln

|Ω
|

no
K

S-2
[K

S04]
any

intersection
m

alicious
|X
| 2·ln

|Ω
|

no
T-2

C
hapter

10
any

intersection
m

alicious
|X
|+

|Y
|

yes
A

gES-2
33

[A
ES03]

any
intersection

cardinality
honest-but-curious

|X
|+

|Y
|

yes
FN

P-3
[FN

P04]
any

intersection
cardinality

honest-but-curious
|X
|·ln

|Ω
|

no
K

S-3
[K

S04]
any

intersection
cardinality

m
alicious

|X
|·ln

|Ω
|

no
K

M
-5

[K
M

06]
any

subsetinclusion
honest-but-curious 31

|X
|·|Y

|·ln
|Ω
|

no
K

M
-6

[K
M

06]
any

subsetinclusion
honest-but-curious 31

(|Ω
|−

|X
|)·ln

|Ω
|

no
LLM

[LLM
05]

any
subsetinclusion

m
alicious

|Ω
|·ln

|Ω
|

no

T
A

B
L

E
8.1:A

llknow
n

w
ell-docum

ented
secure

protocols
for

com
puting

the
setrelations

given
in

Figure
8.2

(page
110).

8.5. Secure Protocols for Computing Set Relations 115

to present the full list of protocols which securely compute set relations. It is
given in Table 8.1. The following remarks may help to read the table:

• The protocols have been named after the authors of the papers in which
they have been presented. Where necessary, protocols have been num-
bered to distinguish different protocols from the same set of authors.

• The column case gives the set sizes for which the protocol has been de-
signed (see Figure 8.3). ‘Any’ implies any combination of set sizes, and
therefore includes the many-to-many case.

• Because the properties privacy and validity can only be assessed with re-
spect to some chosen adversary model, the adversary model is explicitly
stated for each protocol.

• In the columns describing the complexity, X and Y denote the sets of
Alice and Bob. The domain of all possible set items (the ‘universe’) is
denoted Ω. The cardinality of a set Z is denoted as |Z|. The logarithm
base 2 is denoted ln. For many protocols, the communication complex-
ity also depends on a constant factor k, a security parameter k. It has
been omitted for ease of reading. Other constant factors have also been
omitted.

• The column domain compression states whether in the protocol the items
of the sets are abbreviated or not. This will be addressed further in Sec-
tion 8.6.

As can be seen in Table 8.1, a lot of research has recently gone into the
subject matter of secure protocols for computing set relations. Omitted from
the table are protocols for which it is unclear what their security properties are
[DQB95, QBA+98a, QBA+98b, QAD00, Ber04, CC04]34. Also omitted from the
list are ‘protocols’ which for their security actually rely on another protocol
for computing set relations, such as [RCF04]. Another interesting algorithm is
the set comparison algorithm of Wegman and Carter [WC81], which can easily

27 FNW is only listed for completeness. In [FNW96], a total of thirteen protocols is described, some
of which are only secure in the honest adversary model. Some of the protocols require physical
presence or special purpose devices. None of the protocols simultaneously satisfies the privacy,
validity and autarky properties. It is a valuable and enjoyable read nevertheless.

28 In the 1-to-1 case, all interesting set relations are equivalent (see Figure 8.3). In our opinion,
equality is the term which fits best here.

29 In the 1-to-many case, all interesting set relations but equality are equivalent (see Figure 8.3). In
our opinion, intersection is the term which fits best here.

30 The protocols KM-1 through KM-3 are called PIPE #1 through PIPE #3 in [KM05].
32 The protocols KM-2 and KM-3 are also documented in [KM06].
31 In [KM05, KM06], it is claimed that protocols KM-1 through KM-6 can be transformed into

protocols which are secure in the malicious adversary model. The proofs of these claims have
not been published, nor were they available upon request.

33 To avoid confusion with the encryption standard AES, the protocols from [AES03] have
been named AgES-n. The AgES-n protocols have been somewhat modified and extended in
[OYGB04], where essentially a trusted third party (TTP) is introduced.

34 For a discussion of these articles, see Appendix C.1

116 Chapter 8. Knowledge Authentication

name reference case
communication

complexity
domain

compression
JY [JY96] 1-to-1 ln |Ω| no
BST [BST01] 1-to-1 ln |Ω| no
NP-1 [NP99] 1-to-many |Y | · ln |Ω| no
KS-3 [KS04] 1-to-many ln |Ω| no
T-1 Chapter 9 1-to-many 1 yes
NP-2 [NP99] any (|X|+ |Y |) · ln |Ω| no
FNP-2 [FNP04] any unclear no
KS-2 [KS04] any |X|2 · ln |Ω| no
T-2 Chapter 10 any |X|+ |Y | yes
LLM [LLM05] any |Ω| · ln |Ω| no

TABLE 8.2: Protocols which can be used for knowledge authentication This
Table is a strict subset of Table 8.1, except for the KS-3 protocol, which has
been restricted to the 1-to-many case (in which case intersection cardinality is
equivalent to subset inclusion, see Figure 8.3).

be transformed into a protocol in the many-to-many case for computing set
equality with communication complexity 1 (!). This algorithm does not belong
in the table because it assumes honest principals.

All protocols which are suitable for the ‘any’ case leak some information on
the sizes of the sets. For the 1-to-many case, the NP-1 protocol leaks the size
of the bigger set, while our T-1 protocol does not. For the 1-to-1 case, the mere
running of the protocol leaks that the set sizes are both equal to one, but this is
rather dull information and can hardly be considered ‘leaking information’.

A large number of the protocols in Table 8.1 is proven secure in the honest-
but-curious adversary model (see Section 2.6). It is important to appreciate what
this precisely means. In the honest-but-curious adversary model, the principals
are supposed to adhere to protocol specification. Thus, it is assumed that in
this model, the principals do not try to convince other players of possession of
items which they in fact do not possess. Therefore, protocols which compute
the intersection (subset inclusion, equality) problem should definitely not be
considered as protocols which prove possession of set items. They are only
secure under the assumption of no cheating (as discussed also in Section 8.3).

Protocols for computing intersection (subset inclusion, equality) which are
secure in the malicious adversary model can be considered a proof of possession.
These protocols and their main properties are summarized in Table 8.2.

8.6 Domain Compression

As can be seen in Tables 8.1 and 8.2, the communication complexities of the
various protocols differ significantly. It is striking that almost all protocols have

8.6. Domain Compression 117

a factor ln |Ω| in the complexity. The reason for this factor is rather simple: these
protocols communicate the set items in encrypted form. If the set of items is
restricted to things like secret keys, which are typically a few thousand bits
long (say, 4096 bits), the domain size is |Ω| = 24096. In that case ln |Ω| = 4096
bits, which is half a kilobyte35. With the current cost of computing power and
communication bandwidth, this is by no means a prohibitive figure.

If on the other hand the set of items is not restricted to secret keys, but is
extended to include binary files (say, up to sixteen megabyte), the domain size
is |Ω| = 2232

, and ln |Ω| = 232, which is sixteen megabyte. If 232 is only a factor in
the communication complexity, the feasibility of such a protocol for a domain
of such size is questionable at least.

To communicate sixteen megabyte of information only to identify a single
file may seem absurd, but it is necessary if communicating less information
would lead to unacceptably many identification errors. When we have a set
Φ (Ω, a constant c, |Φ| < 2c|Ω|, and Φ has a uniform distribution (for any sub-
set of Ω), one can uniquely identify an element x ∈ Φ with an error probability
ε of ε = 2−c by communicating only c + ln |Φ| bits.

Thus, the domain size |Ω| does not impose a lower bound on the commu-
nication complexity, but |Φ|, the size of the of the domain that is actually used.
To obtain a lower communication complexity, we have to compress the domain
Ω onto the smaller domain Φ, hence domain compression36. We need a function
which provides the mapping H : Ω → Φ, where the output has a uniform dis-
tribution.

A protocol that uses domain compression does not operate directly on two
sets X and Y , but on two sets X ′ and Y ′ which are constructed by application
of the mapping H to the sets. (Thus X ′ = {H(x)|x ∈ X} and Y ′ = {H(y)|y ∈
Y }.)

The logical choice for a function that provides the compression, is a crypto-
graphic hash function.37 The output of a cryptographic hash function is indis-
tinguishable from a uniform distribution. The output of a cryptographic hash
function has a fixed length l, which is typically a few hundred for current hash
functions38, yielding a domain Φ with |Φ| = 2l. Such domain sizes for Φ are
sufficiently large.

All in all, the domain Ω is compressed to a smaller domain Φ. When this
is done using a cryptographic hash function, the hash values (∈ Φ) can be
considered ‘abbreviations’ of the original set items (∈ Ω).

When it comes to computing set relations, where the items of the sets stem
from a large or huge domain Ω, one can observe that for fixed sets of secrets
X and Y , the larger a domain Ω, the sparser the sets will be. More specifically,

35 Where we write ln, this is a shorthand for for log2, the logarithm with base 2.
36 Though tempting, we refrain from using the term ‘compression function’, as this term also

has a specific meaning in the Merkle-Damgård paradigm, which applies to cryptographic hash
functions.

37 For an extensive introduction to cryptographic hash functions, see Chapter 3.
38 The hash function with the longest hash values known to date is SHA-512, which produces hash

values of 512 bits long.

118 Chapter 8. Knowledge Authentication

one can observe that

lim
|Ω|→∞

|X| · |Y |
|Ω|

= 0

which makes it abundantly clear that exploitation in the protocols of the spar-
sity of the sets will improve the communication complexity. The protocols
which do exploit this sparsity have a ‘yes’ in the column ‘domain compres-
sion’ of Table 8.1 (they are: T-1, T-2, AgES-1 and AgES-2).39

The instrument that these protocols use in order to exploit the sparsity is
a cryptographic hash function. Instead of communicating encrypted forms of
the set items, the encrypted form of the hash value of the set items is commu-
nicated.

The use of domain compression has subtle but important implications for
the privacy property of a protocol. First, let us repeat the definition of this prop-
erty from Section 2.7. Suppose there are two principals, Alice who possesses X
and Bob who possesses Y .

privacy The inputs X and Y are not mutually disclosed: Alice does not learn
anything about Y except f(X, Y), and Bob does not learn anything about
X except f(X, Y).

Domain compression implies that the privacy property of a protocol is re-
laxed. It remains the case that X and Y are not ‘mutually disclosed’, but in a
weaker sense:

privacy′ The inputs X and Y are not mutually disclosed: for every item y ∈ Y
it holds that if Alice does not know y before the protocol, she does not
know y after the protocol. Similarly for Bob: for every item x ∈ X it
holds that if Bob does not know x before the protocol, he does not know
x after the protocol.

In the latter definition (of privacy′), it is not considered a violation of privacy
if a principal can successfully mount a dictionary attack on the set of the other
principal. In the former definition (of privacy), a successful dictionary attack is
considered a problem.

Both definitions speak of ‘nondisclosure’, but this non-disclosure does not
apply to exactly the same concepts. The difference between privacy and pri-
vacy′ can also be explained using the distinction between the following two
concepts:

the item itself the bit string which may be an element of X and/or Y

knowledge of the item the fact whether the item itself is part of the knowl-
edge of Alice and/or Bob.

39 In the context of sparse sets, it is appropriate to clarify an often misinterpreted result by
Kalyanasundaram, Schnitger and Razborov [KS92, Raz92]. As it would distract too much from
the ‘story line’ of this chapter, it is clarified in Appendix C.2.

8.7. Conclusion 119

In privacy, nondisclosure applies to both the item itself and the knowledge of
the item. In privacy′, nondisclosure applies only to the item itself, and not to
the knowledge thereof. The fact that in the definition of privacy′, nondisclo-
sure does not apply to the knowledge of the item, does not mean that one can
assume knowledge of the item is always disclosed. It means merely that in
privacy′, knowledge of an item may be disclosed.

8.7 Conclusion

Gossiping without disclosing secrets has application in small social settings,
but more importantly also in the comparison of police information (Section
8.1.1) and the exchange of the airline passenger data (Section 8.1.2).

Protocols for knowledge authentication are protocols that allow a player to
prove possession of a secret to someone who also knows the secret, without
disclosing the secret itself.

There are a number of variations of the problem, depending on the follow-
ing properties:

• Does ‘secret’ mean that it is difficult to guess the string that represents
secret (as with the string ‘arkjjhhg bwr ufkng’), or does it mean that the
player has attributed some stance to a commonly known string? (as with
‘I voted for Pim Fortuyn’). We call the former CIWLI without reference, and
the latter CIWLI with reference (see Section 8.2).

• How untrustful and untrustworthy are the players? (i.e., what adversary
model is appropriate? see Section 8.3.)

• How many secrets need to be compared? Just one secret against one other
secret (1-to-1), one secret against many other secrets (1-to-many), or many
secrets against many secrets (many-to-many)? (see Section 8.4.)

• How many possible secrets exist? (i.e., what is the domain size |Ω|?)
How many actual secrets may exist? (i.e., what is the domain size |Φ|?)
(see Section 8.6)

There are many protocols which compute set relations in some secure man-
ner (see Section 8.5, Table 8.1), but only a few of these protocols are suitable for
knowledge authentication (see Table 8.2).

In the next two chapters, we will present our T-1 protocol for the 1-to-many
case (Chapter 9) and our T-2 protocol for the many-to-many case (Chapter 10) .
These are protocols secure in the malicious adversary model, for CIWLI with-
out reference. These protocols use cryptographic hash functions in order to
optimize the communication complexity.

