
kwahjsdfgkgfadhg

Wouter Teepe

A Formal Approach

Reconciling Information Exchange
and Confidentiality

Reconciling
Information Exchange

and Confidentiality
A Formal Approach

Wouter Teepe

The research reported in this thesis has been funded
by the University of Groningen.

http://www.rug.nl

Department of Artificial Intelligence
The research reported in this thesis has been car-
ried out at the Multi-Agent Systems group (MAS) of
the research institute for Artificial Intelligence and
Cognitive Engineering (ALICE) of the University of
Groningen. http://www.ai.rug.nl

SIKS Dissertation Series No. 2007-02
The research reported in this thesis has been car-
ried out under the auspices of SIKS, the Dutch
Research School for Information and Knowledge
Systems. http://www.siks.nl

The research reported in this thesis has been carried
out by Wouter Teepe. http://www.teepe.com

Paranymphs: Judith Grob & Leendert van Maanen

The author can be reached at wouter@teepe.com
Supplemental material and errata will be published
at http://www.teepe.com/phdthesis

c© 2006 Wouter Teepe
photo back cover: Jeroen van Kooten
cover design: Frans Boon

NUR: 993, 995

ISBN-10
ISBN-13

printed edition electronic edition
90-367-2810-X 90-367-2811-8

978-90-367-2810-2 978-90-367-2811-9

http://www.rug.nl
http://www.ai.rug.nl
http://www.siks.nl
http://www.teepe.com
mailto:wouter@teepe.com
http://www.teepe.com/phdthesis

RIJKSUNIVERSITEIT GRONINGEN

Reconciling
Information Exchange

and Confidentiality
A Formal Approach

Proefschrift

ter verkrijging van het doctoraat in de
Gedrags- en Maatschappijwetenschappen

aan de Rijksuniversiteit Groningen
op gezag van de

Rector Magnificus, dr. F. Zwarts,
in het openbaar te verdedigen op

donderdag 18 januari 2007
om 14.45 uur

door

Wouter Gerard Teepe

geboren op 23 februari 1977
te Darmstadt

Promotor: prof.dr. L.R.B. Schomaker
Copromotor: dr. L.C. Verbrugge

Beoordelingscommissie: prof. dr. W. van der Hoek
prof. dr. B.P.F. Jacobs
prof. dr. J.-J. Ch. Meyer
prof. dr. G.R. Renardel de Lavalette

to Lotte and Lucie

Contents

I Introduction 1
1 Introduction . 3
2 Preliminaries . 17

II Tools 27
3 Cryptographic Hash Functions 29
4 Authentication Logics . 47
5 ‘Unsoundness’ of BAN logic . 55
6 Extending GNY Logic . 67

III Approaches 79
7 Information Designators . 81
8 Knowledge Authentication . 101

IV Protocols 121
9 1-to-many Protocols (T-1) . 123
10 Many-to-many Protocols (T-2) . 145

V Conclusion 169
11 Conclusion . 171

VI Appendices 177
A Remarks to Authentication Logics 179
B Summary of GNY Logic . 183
C Remarks to Knowledge Authentication 187
D The Secret Prover . 191
E Notation . 207

Bibliography . 211
Author Index . 226
About the Author . 234
Samenvatting . 235

vii

Detailed Contents

I Introduction 1

1 Introduction 3
1.1 The Privacy Debate . 4
1.2 Guarantees of Availability and Confidentiality 6
1.3 Thesis Contents . 8
1.4 Relation to the Author’s Other Publications 10
1.5 A Case Study: the Dutch Police 10
1.6 Considering Central Storage . 14

2 Preliminaries 17
2.1 Encryption . 18
2.2 Authorization and Authentication 19
2.3 Complexity . 20
2.4 Probabilistic Algorithms . 21
2.5 Oblivious Transfer . 22
2.6 Adversary Models . 22
2.7 Secure Multiparty Computation 23
2.8 Zero-Knowledge Proofs . 24

II Tools 27

3 Cryptographic Hash Functions 29
3.1 Normal Hash Functions . 30
3.2 Special Properties . 32
3.3 The Random Oracle Model . 36
3.4 Design Paradigms . 37
3.5 Common Applications . 41
3.6 (Non-) Incrementality . 44
3.7 Conclusion . 46

4 Authentication Logics 47
4.1 The Goals of an Authentication Logic 48
4.2 The Taxonomy of Any Authentication Logic 49
4.3 Using an Authentication Logic 52
4.4 The BAN Logic Debate . 54
4.5 Conclusion . 54

5 ‘Unsoundness’ of BAN logic 55
5.1 Cryptographic Hash Functions and Justified Beliefs 55
5.2 On the Computational Justification of Beliefs 57
5.3 The Two Parrots Protocol . 58
5.4 Used Inference Rules . 61

viii

5.5 Proof of ‘Unsoundness’ of BAN logic 61
5.6 The Semantic Approach . 63
5.7 Conclusion . 66

6 Extending GNY Logic 67
6.1 Why Authentication Logics Are So Tricky 67

6.1.1 Unstated Assumptions:
Length-Concealment and Non-Incrementality 67

6.1.2 Omitted Inference Rules: The Key to Incompleteness . . 69
6.2 Proofs of Knowledge and Ignorance 71

6.2.1 New Inference Rules for Proving Possession 72
6.2.2 Proving That Principals Do Not Learn Too Much 75

6.3 Conclusion . 77

III Approaches 79

7 Information Designators 81
7.1 Information Integration and its Challenges 83

7.1.1 Overlapping Ontologies 84
7.1.2 Information Propagation 85

7.2 A Joint Approach to Privacy, Anonymity and Information Inte-
gration . 87
7.2.1 Information Designators 87
7.2.2 Dependency and (Un)linkability 88
7.2.3 Operations on Designators 89

7.3 An Example: the Datamining Bookshop 90
7.3.1 Organizational Setting . 91
7.3.2 Designators in Action . 92
7.3.3 Observations About the Use of Subqueries 95

7.4 Methods for Restricting Designator Uses 96
7.5 Discussion and Related Work . 98
7.6 Conclusion . 100

8 Knowledge Authentication 101
8.1 Application Areas of Gossip . 102

8.1.1 Police Investigations . 102
8.1.2 The Passenger Name Record 103

8.2 Comparing Information Without Leaking It and Reference . . . 105
8.3 Adversary Models for CIWLI . 108
8.4 Possible Set Relations . 109
8.5 Secure Protocols for Computing Set Relations 112
8.6 Domain Compression . 116
8.7 Conclusion . 119

ix

IV Protocols 121

9 1-to-many Protocols (T-1) 123
9.1 Prerequisites . 124
9.2 Protocol Description (Simple, no Encryption) 126
9.3 Making the Protocol More Efficient (Elaborate, Encryption) . . . 129
9.4 Correctness Proof in GNY Logic 133

9.4.1 Knowledge Preconditions 134
9.4.2 Claims and GNY Idealization 135
9.4.3 The Easy Part of the Proof 136
9.4.4 Different Options to Complete the Proof 137
9.4.5 Proving principals do not learn too much 140
9.4.6 Modeling the beliefs and possessions of an attacker . . . 141

9.5 Conclusion . 142

10 Many-to-many Protocols (T-2) 145
10.1 Using Prefix Trees for Efficiency 145
10.2 Specification of the T-2 Protocol 148

10.2.1 Subprotocol for Determining Intersection 149
10.2.2 Subprotocol for Proving Possession 154

10.3 Making the Protocol Efficient by Restrictions 157
10.4 Determining Communication Complexity 159
10.5 Conclusion . 166

V Conclusion 169

11 Conclusion 171
11.1 Information Designators . 171
11.2 Knowledge Authentication . 172
11.3 Hash Functions and Authentication Logics 174
11.4 Relevance to the Privacy Debate 175

x

VI Appendices 177

A Remarks to Authentication Logics 179
A.1 A Taxonomy of Versions of the BAN Paper 179
A.2 A Short Survey of Critisisms on BAN Logic 180

B Summary of GNY Logic 183
B.1 Formal Language . 183
B.2 Inference Rules . 184

C Remarks to Knowledge Authentication 187
C.1 The ‘French Approach’ . 187
C.2 On the Probabilistic Communication Complexity of Set Intersec-

tion . 188
C.3 Fuzzy Private Matching . 189

D The Secret Prover 191
D.1 Starting Up and Connection Control 192

D.1.1 Opening a Connection Listener 193
D.1.2 Making a Connection . 193

D.2 Managing Hash Pools . 196
D.3 Running the Protocol . 198

D.3.1 Initiating a Protocol . 199
D.3.2 Responding to a Protocol 200
D.3.3 A Side Note on Hash Pools 200
D.3.4 Challenging . 201
D.3.5 Proving . 203
D.3.6 Verifying . 204
D.3.7 Faking . 206

D.4 Closing . 206

E Notation 207
E.1 Symbols . 207
E.2 Letters . 208

Bibliography 211

Author Index 226

SIKS Dissertation Series 230

About the Author 234

Samenvatting 235

xi

List of Figures

1.1 Dependencies between the chapters that make up the main body
of the thesis at hand . 9

1.2 Matching of police information within the VROS 13

2.1 A trivial primality testing algorithm 21
2.2 The Miller-Rabin primality testing algorithm 21
2.3 A Rubik’s cube . 25

3.1 A ‘normal’ hash function in action 31
3.2 The relation between various properties of cryptographic hash

functions . 35
3.3 A Merkle-Damgård hash function 38
3.4 A hash function of the randomize-then-combine paradigm 39
3.5 Incremental hash function in action 45

4.1 The signing parrot protocol, plain description 49
4.2 GNY idealization of the signing parrot protocol 51
4.3 GNY annotation of the signing parrot protocol 52
4.4 Heavy GNY annotation of the signing parrot protocol 53

5.1 The two parrots protocol, graphical illustration. 58
5.2 The two parrots protocol, plain description 60
5.3 BAN idealization of the two parrots protocol 60
5.4 GNY idealization of the two parrots protocol 60
5.5 Heavy BAN annotation of the two parrots protocol 63

7.1 The main aims and interests for organizations participating in in-
formation integration . 86

7.2 An information dependency graph containing the four organiza-
tions of the example . 92

7.3 A global SQL query which would provide the local bookshop
with the information it desires . 94

8.1 The relations possible between two sets X and Y 110
8.2 Some interesting set functions for which secure protocols exist . . 110
8.3 Special cases of the sizes of two sets 111

9.1 T-1 protocol, no encryption, verifier initiates 127
9.2 T-1 protocol, no encryption, prover initiates 127
9.3 T-1 protocol, no encryption, mutual proof 128
9.4 A rough paraphrase of the T-1 protocols 129
9.5 The initialisation and maintenance of the look-up table 130
9.6 T-1 protocol, encryption, verifier initiates 131
9.7 T-1 protocol, encryption, prover initiates 131
9.8 T-1 protocol, encryption, mutual proof 132
9.9 GNY idealization of the T-1 protocol, no encryption, verifier initiates136
9.10 The output of the protocol parser for the T-1 protocol 137
9.11 GNY proof of the T-1 protocol . 139

xii

10.1 Sets KBA, KBA represented as binary hash value prefix trees . . 146
10.2 Interleaved subprotocols for establishing the intersection,

shown as a colored surface, with l = 4 152
10.3 Interleaved subprotocols for establishing the intersection,

shown as a colored surface, with l = 16 152
10.4 The number of communicated bits in the restricted T-2 protocol

with cooperative participants, shown as a density plot 163
10.5 The number of communicated bits per compared secret in the re-

stricted T-2 protocol with cooperative participants, shown as a
density plot . 164

D.1 Main application window . 192
D.2 Opening a connection listener . 193
D.3 Filling in a name . 193
D.4 Making a connection . 194
D.5 Filling in connection details . 194
D.6 An initiated connection (outgoing) 194
D.7 Receiving a connection (incoming) 195
D.8 An authentication warning . 195
D.9 An authentication mismatch . 195
D.10 Main application window, with connections 195
D.11 A new hash pool window . 196
D.12 Adding files to a hash pool . 196
D.13 A hash pool with files added . 196
D.14 Computation of hash values . 197
D.15 A ready hash pool . 197
D.16 Adding files to an existing hash pool 197
D.17 A new protocol window for the initiator 199
D.18 A protocol window, configured by the initiator 199
D.19 A protocol window of the initiator for a protocol that has started 199
D.20 A new protocol window for the responder 200
D.21 The responder has filled in the nonce 200
D.22 The responder has committed the nonce 200
D.23 The verifier chooses whether he will halt the protocol 202
D.24 The verifier has challenged the prover 202
D.25 The prover has received a challenge 202
D.26 The prover sends some fake hash value h2 203
D.27 The prover sends a genuine hash value h2 203
D.28 The prover hash halted the protocol 204
D.29 The verifier receives an unexpected value of h2 205
D.30 The verifier receives the h2 he expected 205
D.31 The verifier has been informed that the prover has halted the pro-

tocol . 205

xiii

List of Tables

3.1 Some commonly used cryptographic hash functions 40

7.1 Two relational tables which can be combined to relate courses to
birth dates . 83

7.2 The schemata of the information that is maintained by the civic
authority, the local school and the book publisher 93

8.1 All known well-documented secure protocols for computing set
relations . 114

8.2 Protocols which can be used for knowledge authentication 116

9.1 Basic messages used in the T-1 protocol. 125

10.1 Binary encoding of some hash prefix trees 147
10.2 Basic messages used in the T-2 protocol 148
10.3 A sample run of interleaved subprotocols for establishing the in-

tersection . 151
10.4 Interleaved subprotocols for establishing the intersection,

shown as a growing binary tree 153
10.5 State variables in a subprotocol for proving possession 155
10.6 A sample run of the subprotocol for proving possession 156
10.7 Encoding for sets Rp where ∀s : |s| = 1 and p may be omitted . . 158
10.8 A sample protocol run of the restricted T-2 protocol, efficiently

encoded . 159
10.9 The worst case communication complexity for the restricted T-2

protocol, depending on the strategies 160
10.10 The ten conditions of the experiment to estimate the average com-

munication complexity of the restricted T-2 protocol with cooper-
ative principals . 162

10.11 Descriptive statistics of the number of communicated bits in the
restricted T-2 protocol with cooperative participants 163

10.12 Descriptive statistics of the number of communicated bits per
compared secret in the restricted T-2 protocol with cooperative
participants . 164

10.13 Upper bounds on average communication complexities of the T-1
and the T-2 protocol . 165

xiv

Acknowledgements

It is said that the the parts of a thesis that are read most often are the acknowl-
edgements and the bibliography. Though probably true, this is fascinating be-
cause in many aspects the acknowledgements and the bibliography are the
most boring parts of a book. They are rather dull lists of names, combined
with respectively compliments or article details. If anything, the real meat of a
thesis is not to be found in any of those two sections. What is it that attracts so
many people to these sections?

Let me guess. Lists of names give the reader a peek into the personal life
of the author. Who are his friends? What does his professsional network look
like? As a researcher on the subject of privacy, this begs the question. Actually,
two questions: Why does one voluntarily give up one’s own privacy? Why
don’t all the mentioned people object to being mentioned? The answer to the
first question boils down an undisclosed mixture combination of politeness,
window-dressing, and sincerety. The answer to the second question is more
intriguing.

There is an implicit contract that one shall only say positive things about
the people mentioned in the acknowledgements. Privacy infringements are
not that bad if only positive information is disclosed. But what if politeness
urges one to mention somebody, though the author is not generally positive
about the person in question? The trained reader immediately recognizes such
cases. Typically, supervisor X has been praised extravagantly, and supervisor
Y is acknowledged only for “the interesting discussions”. Why stick to the
contract?

Though the availability of dirty laundry is not a constraining factor, I will
leave the question unanswered. Instead, I will focus on another dilemma, pro-
portionality versus exhaustiveness. When I want to express my gratitude to-
wards someone, a logical place to do so is in the acknowledgements. As not all
people have contributed equally, some people deserve more attention than oth-
ers. Consider the situation where person X did everything possible, and even
a bit more, while person Y was so polite to answer an informational email.
Would it be disproportional if I took only ten times as many words to express
my gratitude towards X?

I daresay it would. Absolutely. As such, and in this context, exhaustiveness
implies disproportionality. Still, and in this context, exhaustiveness is a negoti-
atable concept. A close fried of mine chose to simply thank virtually everybody
he knew.1 Instead of listing my whole address book, I wonder whether there
exist valid criteria for omitting people from the list.

1 Moreover, he thanked everyone he forgot to mention to whom he owes gratitude for not being
offended by that. [Koo03, page x]

xv

One possible criterion for omitting people is the question whether their con-
tribution was to be expected based on their job profile. It seems superfluous
to thank somebody for just doing his or her job. However, in a context where
meeting one’s obligations cannot taken for granted, this criterion is far too gen-
eral. Another possible criterion is to only mention people who actually influ-
enced the contents of my thesis. This does not work either, as soon as one
observes that one’s general well-being influences one’s work. Where does this
leave me?

Factually, it leaves me with an acknowledgements section which is com-
posed completely by subjective opinions, and filtered to meet some unwritten
norms. As a bonus, the first page is not a dull list of names.

Of the people who have been professionally involved in the process of this
thesis, the utmost important person to acknowledge is Rineke Verbrugge, my
daily supervisor. She is this good, that if I would have had any problem with
her, I could be sure the problem would have been on my side. If anyone is a
role model for a good supervisor, she is. Any list of appreciated competences
would be glaringly incomplete, and therefore I will not even try to enumerate
just the most important ones.

Lambert Schomaker, my promotor, has been honest with me: our expertises
and interests are not even close. I admire his courage to acknowledge this up-
front, and I am grateful for the trust and freedom he has given me to develop
my own interests without his interference. Even more, he has protected my
research against many ‘evil powers’ from the outside.

In the team of people involved in the ANITA research project2, I have
found many amicable conspirators, soundboards and keen questioners. Spe-
cial mention deserve Kees de Vey Mestdagh, Pieter Dijkstra, John-Jules Meyer,
Frank Dignum, Huib Aldewereld, Laurens Mommers, and Jaap van den Herik.
By means of the ANITA project, I was introduced to a few valuable contacts
at the police. Paul Elzinga, information architect of the Dutch police, has been
very helpful in explaining how the Dutch police handles many kinds informa-
tion. Tom van der Velde, privacy officer of the police in Groningen, provided
the most inspiring example of my research period (Section 1.5).

The award for the most valued partners-in-crime go to fellow-PhD students
Kathy Cartrysse (Delft University of Technology) and Sieuwert van Otterloo
(The University of Liverpool). With both, I spent a large number of long af-
ternoons discussing many in-depth issues. Their knowledge, enthusiasm and
interest have been an immense factor in the quality of my research.

Many others have contributed by important but little things like answer-
ing emails with my questions. Often, these questions turned out to expose
my lack of knowledge of specific areas, but the following people have been so
kind as to patiently answer them: Ross Anderson, Niels Ferguson, Antonina
Mitrovanova, and Leen Torenvliet.

2 The ANITA project was supported by the Netherlands Organisation for Scientific Research
(NWO) under project number 634.000.017.

xvi

Another simple, but very important contribution to my research has been
the unbounded enthusiasm expressed by Rafael Accorsi, Hans van Ditmarsch,
Hans Kamerbeek, Alessio Lomuscio, Gerben Wierda, and many others. With-
out supporters, it is hard to play a match. More strenuous have been the con-
tributions of those who have patiently proof-read articles and chapters, and
have unscrupulously reported on the many weaknesses they found: Anton
Ekker, Katrin Franke, Jan-Willem Hiddink, Bart Verheij, Gerben Wierda, and
the anonymous and not-so-anonymous reviewers.

Some particularly unanoymous reviewers were Wiebe van der Hoek, Bart
Jacobs, John-Jules Meyer, and Gerard Renardel de Lavalette, jointly known
as the manuscript committee. The value and quality of their feedback was
tremendous, and their comments triggered many significant improvements.

Research can only flourish in a good environment, and it has been a great
pleasure to share an office with Marius Bulacu, Judith Grob, Leendert van
Maanen, Karin Zondervan, and Egon van Baars. The availability of instant
reflection, warm friendship and a relaxed atmosphere is exclusively their con-
tribution. Outside of the office, but still at the same department, I have had
the pleasure to enjoy the comforting company of Tjeerd Andringa, Fanny
Huitenga, Dirkjan Krijnders, Marcia van Oploo, Hedderik van Rijn, Esther
Stiekema, Niels Taatgen, Rineke Verbrugge, Bart Verheij, Geertje Zwarts, and
many others.

Not easy to classify, but important nonetheless have been the conversa-
tions with Frank Ankersmit, Łukasz Chmielewski, Jaap-Henk Hoepman, Onno
Kubbe, Gerard te Meerman, Reind van de Riet, Martijn Warnier, Maurice
Wesseling, and Edwin Wolffensperger.

With Marc Hooghe, Stefaan Walgrave and Jochum de Graaf I have had
the pleasure of building and discussing party profile websites (“stemadviezen”).
Alex Allersma, Marieke Berghuis, Rutger van Koert and Bart van Oudenhove
have relieved me from various taxing tasks. Jeroen van Kooten allowed me to
use the picture on the back cover, which was designed by Frans Boon.

Here is the Hollywood part.
Indirect — but hugely important — contributions to this thesis have been

made by everyone who improved my general well-being. With Ron Gerrits,
Wemke Tuinier and Iris Vermeeren I have enjoyed many sessions of climbing
and much comradeship. Gea Bakker, Wierd Jansma, Barteld Kooi, Stephanie
Hoenders, and Judith Grob are the best friends to have around.

The remark about exhaustiveness and dispropotionality made above, ap-
plies in particular to the people mentioned below.

It is impossible to exaggerate the importance of Lotte Douze and Lucie
Teepe in my life. Lotte has been my loving and caring girlfriend all these years,
and I am elated about our recent marriage. Lucie is our daugther since April
2005, and I am a happy man to have these two wonderful wonders around.

Wouter Teepe
Groningen, November 2006

xvii

Part I

Introduction

1

Chapter 1

The privacy debate is introduced, and it is
explained how this thesis relates to it. The focus

of this thesis is given: strong guarantees from
cryptographic hash functions and formal analysis
of security protocols. The structure and contents

of this thesis are revealed. We present a case
study of a potential and inspiring application

domain: the police. We finish with some
deliberations on the merits of central storage of

sensitive information.

Introduction

Securing sensitive information against unauthorized use, while guaranteeing
access for its intended uses, is difficult. One of the difficulties lies in the fact
that ‘intended use’ is a rather vague term, which is often explained as ‘need to
know’, a similarly vague term.

Securing sensitive information in such a way that only specific, listed peo-
ple have access to it, is not that difficult. For example, many police records are
protected in such a way that police officers have access to it, but others not. The
problem with this type of protection is, that police officers do not need access
to all police records, but only to those relevant to them. Though police officers
are generally trustworthy people, they do have access to information they have
nothing to do with.

Whether there is a need to know, seldom coincides with a list of people that
is easy to construct. If one wants to improve the guarantees against unautho-
rized use of sensitive information, it seems logical to grant access to informa-
tion based on whether there is a need to know. The problem is that it is difficult
to precisely state and operationalize what constitutes a need to know. More-
over, the question whether one should be granted access, often depends on the
information itself, to which there is no access yet: a Catch-22.

It is the aim of this thesis to help solve this problem, by offering technical
solutions: we propose new methods to organize information in databases, and
we propose cryptographic protocols.

• Using the methods, it is possible to compartmentalize the information into
pieces that are so small that the need to know is easier to operationalize.

• Using the protocols, it is possible to make access decisions based on secret
information without disclosing the information.

3

4 Chapter 1. Introduction

1.1 The Privacy Debate

Informally, ‘sensitive information’ is information about individuals or orga-
nizations, for which there is some commonly accepted norm that not all that
information should be available to everybody. Typically, this is in the interest
of the individuals or organizations that the information is about. The aim of the
confidentiality of sensitive information is to prevent misuse of the information.

The trouble is, that for many kinds of sensitive information, there are gen-
uine reasons why in certain circumstances, the confidentiality has to be sac-
rificed. When one wants to facilitate such ‘genuine sacrifices’, there needs to
be a ‘backdoor’ in the protection of the information. The appropriate way to
implement this proverbial backdoor is the subject of a large public debate, the
privacy debate.

The following examples help to get an impression of the kinds of sensitive
information to which the privacy debate applies:

Criminal records Information about the criminal behavior of people is kept
secret in order to guarantee the state monopoly of justice. By keeping
criminal records confidential, it is prevented that people take the law into
their own hands or interfere with their own prosecution, which would
result in disproportional and unequal punishment.

Medical files Information about the particulars of someone’s health is kept se-
cret as an extension of the integrity of the body. The medical history of
someone is considered as very intimate information. Keeping medical
files confidential promotes solidarity. If medical files were public, per-
sons who fall into risk categories of whatever kind, would have great
difficulty in applying for jobs and obtaining insurance.

Mail The confidentiality of mail is there to guarantee the freedom of thought
and speech. If one has no control over who will receive a mail message
when it is sent, one cannot verify whether the recipient is a friend or
possibly a foe. Lack of confidentiality of mail will lead to some form of
self-censorship.

Financial files Details of the financial status of an individual are kept secret
to protect the negotiation position of individuals, and to protect wealthy
individuals from targeted crime. Confidentiality of financial files should
prevent exploitation.

The underlying norms that make this information ‘sensitive’ are not con-
troversial, they are not the subject of a serious debate. Nevertheless, it is also
commonly understood that the confidentiality of this information cannot be
absolute. For certain jobs in which people carry a high responsibility, the crim-
inal records of applicants have to be verified. If someone carries a highly con-
tagious and dangerous disease, health organizations will use this information
in order to prevent an epidemic. When it is certain that a person is planning a
terrorist attack, his mail will be read and his phone tapped, in order to prevent

1.1. The Privacy Debate 5

the attack. When someone goes bankrupt, the curator will have full access to
that person’s financial files.

There is a fierce public debate about at what point the interests of the society
as a whole should take precedence over the interests of the individual. For
example: how strong should evidence be before the privacy of an individual is
infringed? If the evidence is required to be 100% decisive and based on sound
science,1 the interest of the society will in practice almost never take precedence.
If the requirements on the evidence are set too low (say, only 1%), one faces the
risk of sacrificing the fundamental values of justice [Sus06]. Here is a Catch-22:
if the evidence is in fact 100% decisive, the information is probably not even
needed anymore, but to know that it is indeed 100% decisive, one needs access
to the information.

This privacy debate is widely believed to have zero-sum characteristics2: the
wishes of those who defend privacy are (supposedly) fundamentally incom-
patible with the wishes of those who give priority to fighting crime and terror-
ism. The thought that describes this, can be summarized as ‘Either you infringe
everyone’s privacy, or you do not catch any terrorists.’

In this thesis, the author does not wish to engage in this debate. Its connota-
tion is primarily political and judicial, and though the author is well informed
on these subjects and has a stake in this debate, he does not wish to claim sci-
entific expertise on them. The opinion of the author is a political one, and not
one based on science. Personal opinions do not belong in a scientific work.

Whatever comes out of the privacy debate, whether it be by means of con-
sensus or decree, it will be a policy that tries to reconcile confidentiality of sen-
sitive information with the guarantee of its use in urgent circumstances. When
such a policy is to be implemented, scientific questions arise, such as:

• How can we organize information in such a way that a policy is enforced?

• What kind of guarantees on confidentiality and availability are precisely
required?

It is not uncommon that a chosen policy cannot be implemented as such,
but has to be adjusted before it can be implemented: not everything that is
desirable is also possible (or affordable). Adjustment of a policy prior to im-
plementation may mean that delicate agreements reflected in the policy are
sacrificed for the sake of being able to implement the policy at all. A good pol-
icy is one which can be implemented without sacrificing essential parts of the
policy. As such, technology has a constraining effect on policy-making, while
technology should ideally be facilitating for policy.

1 ‘Sound science’ is a political euphemism for requiring a very high burden of proof [Moo05].
2 To see the zero-sum characteristics, it helps to perceive the privacy debate as a game between

the privacy advocate and the terrorist fighter. The goal of the game is to settle on an informa-
tion exchange policy. From the established policy, player payoffs are calculated. If infringing
privacy is required for catching terrorists, the interests of the players are (at least to some extent)
diametrically opposed [Bin92, page 237] [OR94].

6 Chapter 1. Introduction

The aim of this thesis is to increase the facilitation of technology for policies
regarding the exchange of sensitive information. In that perspective, the key
contributions of this thesis are the following:

Information Designators A new method for structuring information, which
demonstrates that exchanging information on the one hand, and privacy
and confidentiality on the other hand, can go hand in hand (Chapter 7).

Knowledge Authentication A set of efficient protocols which allow the com-
parison of information without disclosing the information itself. This has
applications in, for example, passenger information exchange between
the European Union and the United States of America (Chapters 8–10).

Thus, although this thesis does not defend any position in the privacy de-
bate, it provides input to this debate. The techniques presented in this thesis
offer new solutions to settle the privacy debate. The relevance of these tech-
niques is high because they demonstrate that in certain cases it is possible to
simultaneously accommodate many wishes of either side of the privacy de-
bate: to respect the privacy of innocent citizens to a high degree, while the
information required for protecting the society as a whole (against terrorism,
contagious diseases, etc.) is provided.

It is not to be expected that any reasonable civil liberties activist will ob-
ject if the privacy of proven criminals or terrorists is infringed on purely for
the act of bringing them to justice3. We present technologies that do just that,
without infringing on the privacy of innocent citizens. Thus, we demonstrate
that settling the debate is not a zero-sum game at all if the right technology is
deployed.

1.2 Guarantees of Availability and Confidentiality

The meaning of a ‘guarantee’ in a legal context is quite different from the mean-
ing of a guarantee in a mathematical or cryptographic context. This applies also
to guarantees of availability and confidentiality.

A legal guarantee of availability of information, such as the Freedom of In-
formation Act (FOIA)4 gives someone a right to certain information, but not a
means to quickly exercise this right. A FOIA request may take months to com-
plete, and the request may fail for a number of reasons.

A legal guarantee of confidentiality of information, such as a privacy law or
a non-disclosure agreement (NDA) obliges someone to keep certain information
secret, but it does not physically prevent disclosure of the information. An

3 Because it implies the information collection procedure is selective [Jac05].
4 This is the name of two similar laws in the United States of America and the United Kingdom.

The Dutch equivalent of this law is the Wet Openbaarheid Bestuur (WOB). The FOIA is best sum-
marized as “The Freedom of Information Act gives everyone the right to access information held
by the public sector.” (http://www.direct.gov.uk/RightsAndResponsibilities/
RightsAndResponsibilitiesArticles/fs/en?CONTENT ID=4003239&chk=xi42h7)

http://www.direct.gov.uk/RightsAndResponsibilities/RightsAndResponsibilitiesArticles/fs/en?CONTENT_ID=4003239&chk=xi42h7
http://www.direct.gov.uk/RightsAndResponsibilities/RightsAndResponsibilitiesArticles/fs/en?CONTENT_ID=4003239&chk=xi42h7

1.2. Guarantees of Availability and Confidentiality 7

NDA gives the owner of the information the right to hold the discloser of the
information liable in court. This leaves the owner of the information at risk: he
may be unable to detect the disclosure of the information, while he does suffer
from damages as a result of the disclosure.5 Even if he is able to detect the
disclosure of the information, he may be unable to prove this convincingly in
a courtroom setting. Not to mention that going to court is generally a tedious,
time-consuming and expensive process.

While legal guarantees of availability and confidentiality effectively serve
a large number of purposes, such as the protection of press freedom and in-
tellectual property, they are often considered insufficient for parties at either
side of the privacy debate. A police officer cannot do his duty if he depends on
time-consuming procedures to obtain the information he needs to investigate
a crime. Similarly, a fighter for civil liberties will not be satisfied with a mere
promise that his phone will not be tapped, as is it highly unlikely that he will
ever be informed of such a tap.

Cryptography is not like law at all. One of the aims of cryptography is
to guarantee information availability and confidentiality to absurdly high de-
grees.6 Instead of writing lengthy contracts in legalese that describe what
should happen when something goes wrong, cryptography aims to prevent
things from going wrong. For example, to break the best modern encryption,
which is a means to guarantee confidentiality, one needs thousands of years of
computation. Colloquially, the likelihood of guessing an encryption key cor-
rectly is smaller than the likelihood of getting struck by lightning several days
in a row, and surviving.

Cryptography and modern IT infrastructure form a tandem which has the
potential of offering both confidentiality and availability guarantees. Admit-
tedly, IT infrastructure does not always live up to its expectations, as it some-
times fails to deliver availability – also in cases where confidentiality is of no
concern. If cryptography is improperly used, it does not offer any confidential-
ity guarantees.

This thesis aims to help develop the potential of the cryptography/IT tan-
dem for guaranteeing both confidentiality and availability of sensitive infor-
mation.7 In this perspective, we focus on the following:

Cryptographic Hash Functions A type of algorithm for creating fingerprints of
information, in such a way that the information itself is kept confidential.
Our contribution is a new application area of cryptographic hash func-
tions, and the concept of a non-incremental hash function (Chapter 3 and
throughout the thesis).

5 This risk is not hypothetical: for example, it is not unusual that a creditcard or mortgage com-
pany refuses someone as a client based on information gathered from an information broker (a
‘mass-scale private investigator’) that gathered information from obscure sources.

6 Other typical aims of cryptography are non-repudiation and guarantees of integrity.
7 Digital Rights Management (DRM) technology is similar but different. DRM technology guar-

antees confidentiality and availability of copyrighted material, which is typically owned by the
entertainment industry. The goal of our research is to promote both confidentiality and avail-
ability of sensitive information about individual citizens.

8 Chapter 1. Introduction

Authentication Logics A method for analyzing security protocols. Our con-
tribution is the extension of a particular authentication logic (GNY logic)
to handle cryptographic hash functions, and a proof that another authen-
tication logic (BAN logic) improperly handles cryptographic hash func-
tions. (Chapters 4 and 5)

This thesis focuses on strong guarantees for availability and confidentiality.
We use formal methods to reason about the knowledge of persons involved in
security protocols, and analyze what these persons can and cannot derive from
the information they have got.

1.3 Thesis Contents

In the previous pages, we have motivated and introduced the research that is
presented in this thesis. The structure of the thesis at hand is as follows:

In Part I we motivate the relevance of the research conducted in this the-
sis. What is sensitive information, and why do we need technology to handle
sensitive information? (Chapter 1). For reference and the uninitiated, we sum-
marize some important concepts of security and cryptography (Chapter 2).

Part II introduces the main security building blocks used to construct and
analyze the protocols presented in this thesis. The cryptographic hash function
is the most important cryptographic primitive applied in this thesis. We intro-
duce the concept of a non-incremental cryptographic hash function (Chapter 3).
To analyze the security properties of the presented protocols, we use authen-
tication logics, of which the basics are explained (Chapter 4). BAN logic, the
‘mother of all authentication logics’, contains a flaw with how it handles cryp-
tographic hash functions. We prove that as a result of this, BAN logic is not
‘sound’ (Chapter 5). GNY logic, another authentication logic (summarized in
Appendix B), is extended in such a way that our protocols can be analyzed
using GNY logic (Chapter 6).

Part III is the conceptual heart of the thesis, and presents two approaches to
handling sensitive information. Instead of propagating information through-
out information systems, which is essentially a massive disclosure of informa-
tion, information can also be linked by using information designators. This idea
may sound trivial, but it is in fact a radical departure from how information is
integrated nowadays. If the idea is fully applied, there are benefits for both
information availability and confidentiality (Chapter 7). A typical problem
with confidential information is how to establish that two people both know
something without actually disclosing it, which we dub knowledge authentica-
tion. The chicken-and-egg problem ‘do you know the secrets that I know?’
turns out to be difficult to formalize. We distinguish the case 1-to-many, where
one single secret (that I know) is compared to many secrets (that you know)
and the case many-to-many, where many secrets (that I know) are compared to
many secrets (that you know). We survey what solutions currently exist for
this problem, and what their merits are (Chapter 8).

1.3. Thesis Contents 9

Appendix A

Part II

Chapter 3 -

�
�

�
�

�
�	 ?

@
@

@
@

@
@R

HHHj

Chapter 4

6

�

�
���

Chapter 5

Chapter 6

?
Part III

Chapter 7 - Chapter 8

?

-

HHHj

Part IV

Chapter 9

?
HHHj

�
���

H
HHY

6

Appendix B

Appendix C Chapter 10
Appendix D

FIGURE 1.1: Dependencies between the chapters that make up the main body
of the thesis at hand. The arrow y - x means that to fully understand chapter
x, chapter y should be read.

In Part IV, new security protocols are presented which implement knowl-
edge authentication. The T-1 protocol does so in the 1-to-many case. In the
T-1 protocol a message is sent that can only be recognized if one knows a par-
ticular secret. When one claims to know the secret, a (NP-hard) puzzle is cre-
ated that can only be solved if one knows the secret. The T-1 protocol is very
efficient in terms of communication and computational requirements. It uses
non-incremental cryptographic hash functions, and is proven correct using our
extension of GNY logic (Chapter 9). The T-2 protocol implements knowledge
authentication in the many-to-many case. The T-2 protocol is a parallel com-
position of the T-1 protocol, and as such inherits its security properties from
the T-1 protocol. In the T-2 protocol the players work together to efficiently de-
termine the intersection of their secrets. The communication complexity of the
T-2 protocol depends on the cooperativeness of the players, and we estimate
this complexity experimentally (Chapter 10).

In Part V, we draw some conclusions (Chapter 11).
The appendices in Part VI contain some background information to various

chapters. Appendices A and C contain some in-depth explanations to the lit-
erature referenced in Chapters 4 and 8, respectively. Appendix B gives a sum-
mary of GNY logic which is used in Chapters 4, 6 and 9. Appendix D describes
the prototype software of the T-1 protocol presented in Chapter 9. Appendix E
gives a summary of the formal notations used in this thesis.

When we focus on the main body of the thesis at hand (leaving out the
introduction and conclusion part) we can visualize the dependencies between

10 Chapter 1. Introduction

the chapters as in Figure 1.1. When chapter x depends on chapter y (notation
y - x), this means that to fully understand chapter x, chapter y should be read.
For Chapters 7 (information designators) and 8 (knowledge authentication),
special care has been taken to make sure they are still rather intelligible without
reading their background knowledge chapters first (Chapters 2, 3 and 7). In
Chapter 9, it is only the correctness proof in GNY logic of the T-1 protocol,
given in Section 9.4, that depends on Chapter 6.

Chapters 3 (cryptographic hash functions) and 4 (authentication logics) in-
troduce the background on which the results in this thesis are based. As such,
these chapters mainly summarize results of other researchers, though some
new concepts are introduced in these chapters: non-incremental cryptographic
hash functions (Chapter 3) and heavy GNY annotations (Chapter 4). From Chap-
ter 5 onwards, all material presented is essentially new, though Chapters 7 and
8 contain various discussions of related research.8

1.4 Relation to the Author’s Other Publications

Chapter 5 has been presented at FAMAS’06 [Tee06a]. An earlier version of
Chapter 7 has appeared in the International Journal of Computer Systems Sci-
ence & Engineering [Tee05b].

The T-1 protocol which is presented in Chapter 9 was first published at the
Knowledge and Games Workshop 2004 [Tee04], and its proof in GNY logic
(Section 9.4) first appeared in Synthese [Tee06b]. Chapter 8 (in particular Sec-
tion 8.2) contains traces of both of these publications. Our opinion letter in
Het Financieele Dagblad [Tee05c] can be considered a summary for laymen of
the T-1 protocol. All our publications mentioned above are subsumed by this
thesis.

The author’s publications on workflow analysis and security [TvdRO03,
TvdRO02, Tee99] and on expert systems for online voting advice (‘party profile
websites’) [HT07, Tee05a, TH05] are not reflected in this thesis.9

1.5 A Case Study: the Dutch Police

A typical example of sensitive information that has to be kept confidential, is
the information maintained by crime investigators of the police. Dissemina-
tion of this information to criminals would render the research of those police
officers almost worthless. At the same time, it has to be prevented that two or
more research teams investigate the same people without knowing this. When
police teams are unaware of such a situation, their actions can easily harm one
another’s research. For example: one team is shadowing a suspect in the hope

8 Moreover, Appendices A, B and C do not present new work, but contain discussions of related
research. Appendix D can be considered new work, as it presents a prototype of our new T-1
protocol.

9 The publications mentioned here do not constitute an exhaustive list.

1.5. A Case Study: the Dutch Police 11

that his actions will reveal new pieces of evidence; now another team runs in
and arrests the suspect for another crime. If police teams cooperate, such situ-
ations can be prevented, and moreover collaboration of teams may help them
to mutually exchange incriminating evidence.

In this section, we will describe how the Dutch police currently handles this
situation and tries to reconcile information exchange and confidentiality.10 It
shows the current practice of how an organization of professionals with a high
responsibility deals withs sensitive information.

It should be noted that there are many more information exchange systems
operational within the police, for several purposes (criminal records, missing
persons tracing, fingerprints, license plate registrations, etc.). The system de-
scribed is just one of the systems deployed by the Dutch police.

For every investigation project performed by the police, an electronic dos-
sier11 is created. Access to this dossier is only granted to the officers dedicated
to the project, and a number of superiors. Such dossiers are created and main-
tained locally, at a local police department12, and can have any subject, varying
from ‘the great train robbery’ to ‘pickpockets in Amsterdam’.

An electronic dossier consists of records13 which are added to the dossier
over time. Every record has a time stamp. A record consists of various fields14,
in which the actual information is stored. There are fields for plain text, but
also fields to store specific types of information. The most important types are:

BTK for persons15,

ORG for organizations,

LOK for locations, such as physical addresses,

COM for means of communication, such as phone numbers, and

VTG for vehicles16.

For all of these five field types, there are instructions on how the informa-
tion should be encoded. For VTG, the encoding is simply the license plate num-
ber, for other types, the encoding is more complicated. For BTK for example,
there is a method to derive a 20-character string from a name and birth date, of
which it is supposed that it uniquely identifies any person.

10 Interview with Tom van der Velde, privacy officer of the Police in Groningen, conducted on
November 28, 2002, together with Pieter Dijkstra. The information has been verified by Paul
Elzinga, IT specialist of NPOL, the organization which manages the information exchange in-
frastructure of the Dutch police. The interview occured in the context of the ANITA project,
which was supported by the Netherlands Organisation for Scientific Research (NWO) under
project number 634.000.017.

11 In Dutch police jargon, an electronic dossier is called a registratie.
12 In Dutch police jargon, this is at the korps or regio level.
13 In Dutch police jargon, a record is called a mutatie.
14 In Dutch police jargon, a field is called an object.
15 BTK stems from betrokennen.
16 VTG stems from voertuigen.

12 Chapter 1. Introduction

Hopefully, the police officers will nicely follow the instructions and fill in
all relevant places in the prescribed way. As with every database which is
manually filled, the electronic dossiers also suffer from inconsistent annotation,
and use of text fields where the specific fields could have been used.

When the electronic dossier has as subject a crime for which it is possible
to obtain an arrest warrant17 and it is to be expected that the investigation will
take more than one week, there should be a record in the electronic dossier
which is tagged MRO18. MRO records can only contain fields of the types BTK,
ORG, LOK, COM and VTG. Electronic dossiers can be grouped into two classes:
those that contain an MRO record19, and those that do not contain an MRO
record20. The former class is typical for investigations of serious crimes, the
latter class is typical for exploratory investigations. There are some rules about
what information should be filed in an MRO record, and what information
should not be filed in an MRO record. Roughly, primary information about the
investigated crime, such as the suspect and the crime scene location, belongs in
an MRO record, and secondary information, such as the phone numbers found
in the agenda of the victim do not.

There is one very special electronic dossier, which is called ZWACRI21. It
is essentially a black list of known ‘professional’ criminals. In the ZWACRI
dossier, only the fields BTK and ORG are allowed.22

To improve the individual investigations, the electronic dossiers are auto-
matically compared. The system that performs the comparison is called the
VROS23, and is housed in a heavily protected bunker which would not look
misplaced in a James Bond movie. Every local police office has a dedicated, en-
crypted data connection to the VROS, and every Sunday morning, all electronic
dossiers which contain an MRO record and the ZWACRI dossier are transmit-
ted to the VROS. Only fields of the types BTK, ORG, LOK, COM and VTG are
transmitted; text fields are omitted.

In the VROS, the information is divided into the following groups:

MRO which contains the MRO records,

Black Box which contains records that are not tagged MRO,

ZwaCri which contains the ZWACRI dossier, the black list of known ‘profes-
sional’ criminals.

17 i.e., for which arrest and detention is allowed, in Dutch voorlopige hechtenis, artikel 67 Wetboek
van Strafvordering.

18 MRO stands for Melding Recherche Onderzoek, which translates roughly to ‘notice of police in-
vestigation’.

19 In Dutch police jargon, these are called Lopende Recherche Onderzoeks Registraties (LROR).
20 In Dutch police jargon, these are called Aandachtsvestigingsregistraties.
21 ZWACRI stems from zware criminaliteit.
22 Within the ZWACRI dossier, there are two groups of listed people: the ‘S’ group (for subject)

contains those who are permanently on the black list, and the ’V’ group (for voorlopig), who
are only temporarily on the black list. The ’V’ group is also called grijze velders. The ZWACRI
dossier is also called the S/V-index or Subjecten-index.

23 In Dutch, this stands for Verwijsindex Recherche Onderzoeken en Subjecten.

1.5. A Case Study: the Dutch Police 13

M
RO

XXz
��:

XXz
��:

XXz
��:

XXz
��:

XXz
��:

BTK
ORG

VTG
COM

LOK

Z
W

AC
R

I

XXz
��:
XXz
��:

BTK

ORG

Black Box

X Xz ��:

B
T

K

O
R

G

V
T

G

C
O

M

L
O

K

6

?

6

?

6

?

6

?

6

?�

-

�

-

� -

� -

FIGURE 1.2: Matching of police information within the VROS. Every arrow
represents a comparison (matching) procedure.

Within every group, all information of every field type (such as COM) is
searched for duplicates (except in the Black Box, where this search is only per-
formed for BTK fields). When in two groups the same type of information exists
(such as COM), these groups are also searched for duplicates.24 When a dupli-
cate (a match) is found, the owners of the corresponding electronic dossiers are
informed of this, with one another’s contact information. Thus, every Mon-
day morning, many police officers call one another with questions like ‘I heard
you are also investigating Willem Holleeder, could we find out if we can share
some information?’. From there on, the process of information exchange de-
pends on the sagacity and discretion of the police officers. The comparison
that is performed by the VROS is best depicted by Figure 1.2.

After the comparison process is carried out, the information resident in the
Black Box group is deleted. The information in the MRO and ZWACRI group
are retained until the next Sunday morning, and is available for queries by
police officers. During the week, this information at the VROS is not updated.
The next Sunday morning, the process starts all over again. When a duplicate
(a match) is found where both copies stem from a record which is more than

24 Note that this matching process handles the information in non-MRO records differently from
information in MRO-records: matches between two non-MRO records are only found when
it involves a person. Thus, secondary information is only mutually compared if it involves a
person. Primary information of any type is compared with all other primary and secondary
information.

14 Chapter 1. Introduction

one week old (which can be seen from the time stamp), the match is no longer
reported. This prevents matches from being reported more than once.

To summarize, the VROS can be consulted in two ways. The first way is
implicit: by just adding records to an electronic dossier, matches are reported
once every week. The second way is explicit: by typing in a search query
during the week. One can only search for exact matches, queries like ‘give me
all people suspected of or convicted for blackmail’ are not supported.

1.6 Considering Central Storage

The information exchange in the police organization, which we described in
the previous section, is a sophisticated system. Sophistication should not be
confused with quality of protection. There are a number of weak spots in the
system.

First of all, the information that resides at the VROS is unencrypted. A small
group of insiders with access to the ‘James Bond’ bunker in which the VROS
resides, can effectively read, use and distribute the information of the VROS
at their own will. This is ‘the risk of the malicious system administrator’. Be-
cause the system is large and the stakes are high, the potential damage is huge.
The concentration of information in the VROS makes it an interesting target
for crime, whether it be in the form of corruption (bribes) or attack (computer
break-in).

Secondly, the VROS is not protected against frivolous, unnecessary queries.
Any police officer that performs investigations has access to the VROS. Any
police officer can check whether relatives and celebrities are subject of inves-
tigation, for example. Because the number of police officers is large, and the
corpus of information they have access to is large, dissemination of the infor-
mation can almost be taken for granted.25

The central problem with the quality of the protection of the police infor-
mation in the VROS boils down to central storage of information, and too gen-
erous access to the central information.

The ‘VROS solution’ does not scale up internationally. Police organizations
are often willing to assist their sister-organizations in another country, but they
do not unconditionally trust one another26. Moreover, the law would probably
prohibit such information exchange in various ways. Thus, central storage of
police information is not feasible on an international scale.

These problems are not unique for the Dutch police, but apply to all sensi-

25 Another police information system where this is very clear is the Dutch license plate registra-
tion, to which officially only the police and some selected government organizations have full
access. In practice, it is rather easy to collect this information for a given license plate number.

26 Within a single country, the police departments are essentially obliged to trust one another
by the central government. In an international context, such a central authority is lacking (by
definition).

1.6. Considering Central Storage 15

tive information held by the government. Let us take for example the discus-
sion about the Dutch BSN27.

The Dutch government maintains a lot of information about individual cit-
izens, such as their employment status, marital status, enrollments in educa-
tional institutions, possession of real estate, etc. When one applies for welfare
(financial aid) one has to provide this information to the government, while the
information is already within the possession of the government. This situation
creates an unnecessary administrative burden for the citizen, and also a possi-
bility for fraud [HS06]. Following this line of reasoning, one might conclude
that a central storage of the information about individual citizens, not much
unlike the VROS, linked by means of the Dutch BSN can prevent fraud and
increase service of the government.

The criticisms against the BSN are very similar to the central problems of
the VROS, identified above. Mommers28 writes [Mom06]29:

“The problem is, that for proper use of the BSN, we have to assume
an outright incorruptible government, which will never use infor-
mation for other purposes than those which are strictly necessary,
and which will never undesirably give the information to others.
Moreover, we must assume that it is desirable that the correct infor-
mation is available always and in every circumstance.”

The argument of the incorruptible government (‘risk of the malicious sys-
tem administrator’) also holds into the future, as long as the information is
retained. One may trust the current government, but maybe not the future
government. In the second world war, the Nazis gratefully used the Dutch
municipal inhabitants register, which recorded for every citizen the religious
affiliation, including the Jews.30 Alberdingk Thijm31 can be considered more
than just critical, and mentions a somewhat similar scenario [SOL06, page 71]:

“Privacy violations will be omnipresent the coming years. The
passed few years [sic], it was not considered decent to stand on the
barricades for the right to privacy. This is largely due to 9/11 and
the cry for more anti-terror legislation and less privacy-protection.
The department of justice recently set up a system that enables civil-
ians to participate in crime-fighting by recording criminal events
they witnessed with mobile phones. It is striking that when such
a system is proposed, the Data Protection Board32 does not object.

27 BSN stands for Burger Service Nummer, which translates into ‘citizen service ID’. It is comparable
to the American social security number.

28 Associate professor at eLaw@Leiden, who performs research on accessibility of legal informa-
tion and the interaction between law and technology.

29 This quote is translated from Dutch by the author, and authorized by Mommers.
30 The underground resistance eventually identified this problem, and started destroying munici-

pals registers. The Amsterdam municipal register was set on fire on March 27, 1943.
31 Alberdingk Thijm is also known as the attorney of Kazaa and Skype.
32 College Bescherming Persoonsgegevens — WT

16 Chapter 1. Introduction

It is obvious that there are many problems attached to such a sys-
tem, such as the authenticity of the material sent by the civilians,
access-control and the duration of the storage of it. Only when the
supermarket bonus card33 administration is hacked by Al Qaida
[sic], or something similar, civilians will start worrying about their
privacy again.”

All in all, there is a large number of reasons why central storage of sensitive
information is not advisable or desirable [Jac05]. To guarantee the availabil-
ity of sensitive information where it is needed, some form of central storage is
required. But is it required to store the sensitive information itself in a cen-
tral location? Can we find a solution in which only references to the sensitive
information are stored centrally?

The VROS was designed with these considerations in mind: the electronic
dossiers are not completely sent to the VROS, and the VROS offers only pointers
to other electronic dossiers and their contact persons.

A similar thing is now happening with medical files in the Netherlands:
there is an index of medical files, the LSP34 [Spa05], which links medical files
to persons based on their BSN. As a result, though the LSP by itself does not
contain any medical file, it is rather trivial for almost anybody in the health
business to estamate the size of a persons medical record, which is of course
a proxy for the general health of the person in question35. This demonstrates
that a centralized index which does not contain any ‘sensitive file’ by itself,
but which does contain links to such files, may still disclose information that
should be better protected.

In this thesis, we present technical solutions (the T-1 and T-2 protocols,
Chapters 8–10) that allow the VROS to do exactly what is does now, but with-
out storing the sensitive information in a legible form, as it does now. Thus,
the risk of central storage ceases to exist.36 The same techniques can be used
for comparing bodies of information when there is no central authority, such as
the exchange of passenger information exchange between the European Union
and the United States of America.

Similarly, the information designator (Chapter 7) is a technique that guaran-
tees availability without creating central storage of sensitive information.

33 Loyalty program of Albert Heijn, a large supermarket brand in the Netherlands — WT
34 In Dutch, this stands for Landelijk SchakelPunt.
35 Note that though the BSN of a person is officially secret, it is really easy to obtain this number,

as it is printed on many documents, such as the drivers’ licence and the passport.
36 Moreover, this may save the Dutch police a few pennies because the need for the ‘James Bond’-

bunker ceases to exist.

Chapter 2

A number of common subjects in security and
cryptography literature are briefly explained:

primitives, protocols, encryption, authorization,
authentication, probabilistic algorithms,

oblivious transfer, adversary models, secure
multiparty computation and zero-knowledge

proofs.

Preliminaries

When one talks about security in the context of computers, there are roughly
two types of security to distinguish. Computer security is concerned with the
protection of the computer itself, typically against viruses, malware, Trojan
horses and hacker attacks. Information security is concerned with the protec-
tion of valuable information that may reside on or pass through a computer,
typically against unauthorized manipulation and theft. In practice these two
types of security are closely related: when a computer is compromised, the in-
formation that resides on the computer is no longer secure against theft and
unauthorized manipulation. The two types of security can be independent tar-
gets of crime: many viruses only compromise computers to send out spam,
and not to steal information; information can be stolen without compromising
a computer.

In this thesis, we focus on the information security type of security.

The discipline of cryptography is concerned with hiding the meaning of a
message (rather than hiding its existence). There are roughly two subdisci-
plines of cryptography. One focuses on cryptographic primitives, which are al-
gorithms which transform information in cryptographically relevant ways. Ex-
amples of cryptographic primitives are encryption and cryptographic hashes.
The other subdiscipline focuses on cryptographic protocols, also called security
protocols, which are communication methods that use cryptographic primi-
tives. Typical goals of a cryptographic protocols include authentication (proving
that you are who you claim to be) and secure communication (the messages
sent cannot be interpreted or modified by an adversary).

In this thesis, we focus on cryptographic protocols. As cryptographic primi-
tives are the building blocks of cryptographic protocols, they figure frequently.
We design new protocols, and use primitives.

17

18 Chapter 2. Preliminaries

The remainder of the current chapter introduces and explains a vast num-
ber of concepts and subjects common to cryptography which are used through-
out this thesis. One cryptographic primitive is so essential for this thesis, that a
separate chapter is devoted to it: Chapter 3 is about cryptographic hash func-
tions. A particular tool for analysis of cryptographic protocols is so essential
for this thesis, that a number of chapters is devoted to it: Chapters 4–6 are
about authentication logics.

2.1 Encryption

An encryption algorithm is an algorithm that transforms an intelligible message
(also called plaintext) into an unintelligible message (also called ciphertext). To
an encryption algorithm belongs also a decryption algorithm which transforms
the ciphertext back into the plaintext. To prevent that anybody can decrypt
every ciphertext, encryption and decryption algorithms use keys. A key is a
piece of information that is essential for either successful encryption or suc-
cessful decryption of a message. Thus, to protect a piece of ciphertext from
being decrypted, one only has to keep the decryption key secret.

Keeping a key secret only makes sense when it is difficult to guess the key
correctly. For example, if a particular algorithm would only support two dif-
ferent keys, an adversary could simply try both keys, and find out which one
reveals an intelligible message. Therefore, encryption and decryption algo-
rithms use keys that stem from a very large domain. The domain has to be this
large, that it is infeasible to try out all keys, or even any reasonable fraction
of all keys. Trying out all possible keys until one works is called a brute-force
attack. Trying out keys which stem from a precompiled list is called a dictionary
attack.1

Ciphertext messages are unintelligible, but that does not mean that one can-
not infer anything from a ciphertext. Most importantly, the length of a cipher-
text is often closely related to the length of the corresponding plaintext. This is
called message length revealing (as opposed to message length concealing).2

For some encryption and decryption algorithms the encryption key (the key
used to create ciphertext) and the decryption key (the key used to reveal the
plaintext) are equal. This is called symmetric encryption. For other encryption
and decryption algorithms the keys are not the same. This is called asymmet-
ric encryption. In asymmetric encryption, the encryption key is also called the
public key, and the decryption key is also called the private key.

Somebody, say, a person named Whitfield, can create a public key/private
key pair, and publish his public key. Anybody who wants to send a ciphertext
message to Whitfield that only Whitfield can decrypt, can simply encrypt his
plaintext with Whitfield’s public key. Using some tricks which go beyond the
scope of this explanation, Whitfield can also send a message to anyone using

1 The terms brute-force attack and dictionary attack do apply to the process of guessing any secret
information, not just decryption keys.

2 For a comprehensive discussion of what a ciphertext may reveal, consult [AR02].

2.2. Authorization and Authentication 19

his private key, in such a way that anybody who knows the public key can
verify that Whitfield sent the message originally. This is called a cryptographic
signature.

A good introduction to cryptography is [Sin99]. For more technical and
in-depth explanations, consult [Sch96] (slightly outdated) or [FS03].

2.2 Authorization and Authentication

Cryptographic protocols are often used where access control is of concern, in
order to limit who can view or modify particular information. The process of
establishing whether someone should be given access to information is called
authorization.

The difficulty of authorization is often not on the implementation side (does
the implemented policy reflect the actual policy?3) but on the policy side (does
the actual policy reflect the intention of the policy?4). For example, to protect
medical information, a policy could consist of only granting physicians access
to medical files. A system that does just this perfectly can still fail in its ob-
jective to protect the medical files against misuse, as the policy is arguably too
tolerant: it grants every physician access to every medical file, not just to the
files of his clients.

A simple and often-used method for authorization is an access list: a list
of persons who are granted access (for example, a list of a specific group f
physicians). To actually get access, someone has to identify himself (which
is called authentication) and it has to be verified whether the person is on the
list. To some it seems that authentication is necessary for authorization, and
that therefore these terms can be used interchangeably, but that is certainly not
the case. Authorization and authentication can occur independently of one
another. This can best be explained with two examples. To get physical access
to the interior of a car, one has to put the correct key into the lock and turn
it (authorization). When a police officer obliges you to identify yourself, you
have to present your passport or drivers’ license, and doing so does not result
in any access whatsoever5 (authentication).

To complicate matters even further, authentication has a number of other
related meanings, depending on the context. To authenticate a message is to
verify that a message has not been tampered with. In Chapter 8, we coin the
term knowledge authentication for proving that someone has particular knowl-
edge without disclosing it. This may seem distant from authentication in the
sense of proving that you are who you claim you are, but it is not. In crypto-
graphic protocols, the most common way to prove you are who you claim you
are is to prove that you have a particular private key without disclosing it. As
such, knowledge authentication is a generalization of ‘just’ authentication.

3 Answering this question is called verification of a system.
4 Answering this question is called validation of a system or policy.
5 Nevertheless, failing to identify (authenticate) oneself may result in access to the interior of the

police office.

20 Chapter 2. Preliminaries

2.3 Complexity

A central theme in computer science is complexity, and this theme figures in
virtually every discipline of computer science. The fundamental field of com-
plexity theory is so extremely important and intricate, that one single section in
an introductory chapter can only explain a few very basic concepts. The pur-
pose of this section is to give the reader who has no background in computer
science an idea of what complexity is about, and to refresh the memory of the
reader whose years in college may have drifted from the mind.6

Complexity theory is the study of which amount of resources an algorithm
requires, as a function of the size of the input (the ‘problem description’). The
most important resources are time and memory. The time assessment of an algo-
rithm is called its computational complexity and its memory complexity is called
its space complexity.

Complexities can be determined for a particular algorithm, but also for the
fundamental problem that an algorithm solves. The complexity of a particular
problem is a property of the set of all algorithms that solve the particular prob-
lem. More precisely, the complexity of a particular problem is a measure of
the amount of resources that the most efficient algorithm for that particular
problem requires.

Using complexity theory, one can assess whether it is feasible to use a par-
ticular algorithm to solve a particular problem of a particular size. One can
also assess whether feasible algorithms for a particular problem exist at all.
Whether an algorithm is feasible obviously depends on the amount of avail-
able resources.

A notorious class of infeasible problems is the class of NP-complete prob-
lems. Informally, an NP-complete problem is a problem in which a solution
has to be found, and a solution can be verified to be correct in a number of
steps which is polynomial in the size of the input. However, it may be that the
only way to find a correct solution is to try all possible solutions (of polynomial
length). An example of an NP-complete problem is the subset sum problem:
for a given, finite list of integers, find out whether any subset of the integers
sums up to zero. For any given subset, it is very easy to verify whether it sums
up to zero. But there is no algorithm known that determines whether such a
subset exists that is significantly faster than trying every possible subset, which
is very slow. NP-complete problems are so difficult to solve, that by increasing
the problem size slightly, the resource requirements increase dramatically.

NP-complete problems play a central role in cryptography: an encryption
algorithm is only considered good if to construct the plaintext from the cipher-
text, without access to the decryption key, is an NP-complete problem.

Complexity does not only apply to algorithms, but also to communication
protocols. The communication complexity of a particular protocol is a measure of
how many bits are exchanged in a protocol run. A protocol can be seen as a way
to compute a particular function f(X, Y) (the ‘problem’), where X and Y are

6 For a thorough treatment of complexity, consult [BDG88].

2.4. Probabilistic Algorithms 21

trivial-prime-test(n)
for i = 2 to squareroot(n) do

if (divisor(i, n)) then return composite;
return prime;

FIGURE 2.1: A trivial primality testing algorithm. This algorithm gives a def-
inite answer to the question whether n is prime. The algorithm could be opti-
mized somewhat, but the running time remains O(

√
n).

miller-rabin-prime-test(n, k)
for i = 1 to k do

set w to some randomly chosen number 0 < w < n;
if (not witness(w, n)) then return composite;

return prime;

FIGURE 2.2: The Miller-Rabin primality testing algorithm. The accuracy of this
algorithm depends on the security (‘certainty’) parameter k, a higher value of
k will increase the accuracy. When this algorithm answers that a number is
composite, then it is indeed composite. On every 4k occasions that this algo-
rithm answers a number is prime, the expected number of errors is at most one.
The function witness is a subroutine performing some specific arithmetic test
between w and n. The running time of this algorithm is O(k ln ln lnn).

known to separate parties. The communication complexity of a particular problem
is a measure of how many bits need to be exchanged between the parties in the
most efficient protocol that computes f(X, Y) [Yao79, Kus97].

2.4 Probabilistic Algorithms

For many computational problems, it is very easy to specify how they should
be solved. For example, a program that gives a definite answer to the question
whether a specific number is prime, is only a few lines long (see Figure 2.1).
For large numbers, this primality testing algorithm would take a prohibitively
long time to compute. It is possible to improve dramatically on the computa-
tion time of this test, if we allow the test to be wrong in its answer in only a
negligible fraction of the occasions it is invoked. Such an algorithm is a prob-
abilistic algorithm, and it requires access to some source of randomness (like a
virtual coin which it may flip).

Probabilistic algorithms have the very tricky property that they typically
detect the opposite of the property one is interested in. When it fails to detect
the opposite, it guesses the affirmative to be the case. A well known example
of a probabilistic algorithm is the Miller-Rabin primality test [Mil75, Rab80]
(shown in Figure 2.2). This algorithm tries to find proofs of compositeness7 of
a number n. If it fails to find such a proof for a sufficiently long time, it will

7 Compositeness is the opposite of primality.

22 Chapter 2. Preliminaries

assume that n is a prime. This is not just some ‘guess’, it can be proven that the
chance that the assumption is wrong can be made arbitrarily small, depending
on the time the algorithm invests in finding proofs of the opposite.

Thus, a probabilistic algorithm is an algorithm that may give the wrong
answer, but only in very few cases. Probabilistic algorithms are employed be-
cause they are often much much faster than non-probabilistic algorithms. Al-
most all algorithms used in practice in cryptography are probabilistic.

2.5 Oblivious Transfer

Oblivious transfer (OT), introduced by Rabin [Rab81] is a type of protocol
in which the sender sends a bit with probability 1/2, and remains oblivious
whether it was received. Even, Goldreich and Lempel generalized this type
of protocol to 1-out-of-2 oblivious transfer [EGL85]. In One out of two oblivious
transfer, the sender sends two messages, and the receiver can choose to read
one of the messages. The receiver can read that single part of the message, but
not the other. What message has been chosen, remains secret to the sender.

This rather weird type of protocol has a wide range of applications. For
example, it can provide anonymity to buyers of digital goods. The seller (the
sender in the protocol) cannot determine what the buyer has bought, but the
seller can verify the item is paid for and only one single item is delivered
[AIR01]. Oblivious transfer also has applications in auctions [Lip04]. In gen-
eral, oblivious transfer is a building block for more complex protocols. There-
fore, though oblivious transfer is technically a kind of cryptographic protocol,
it is often considered a cryptographic primitive.

2.6 Adversary Models

The strength of a security protocol depends on the strength of the party that
tries to break the protocol. Thus, when assessing the security of a protocol, one
has to make assumptions about what the adversary is willing to do and about
what he is capable of. Such an assumption is called an adversary model (or a
threat model). There are three common adversary models:

honest The adversary is supposed to completely adhere to the protocol speci-
fication, and not to do anything more than the protocol specification.

honest-but-curious (HBC) The adversary is supposed to completely adhere
to the protocol specification, but is allowed to perform extra calculations
on the information it receives. This model is sometimes called the semi-
honest adversary model. An attacker in this model is sometimes referred
to as a passive attacker.

malicious (Dolev-Yao) The adversary is not required to adhere to the protocol
specification, and is allowed to perform extra calculations on the infor-
mation it receives. Moreover, the adversary is capable of intercepting

2.7. Secure Multiparty Computation 23

any message sent, and is capable of sending any message he is able to
compose. An attacker in this model is sometimes referred to as an active
attacker. [DY83]

In the honest-but-curious and the malicious adversary model, the adver-
sary may perform calculations not specified in the protocol, but the amount
of calculations is polynomially bounded. In particular, the adversary cannot
perform brute-force attacks to find secret keys.

The honest adversary model is very weak, and therefore only erroneously
used. Consider the following protocol for oblivious transfer:

Alice sends Bob a message, but according to the protocol, Bob is
allowed to only look at either the first half of the message, or the
second half of the message.

This protocol is only secure if Alice knows that Bob is honest, that is in
the honest adversary model. Trivially, this protocol is insecure in the honest-but-
curious model.

When a protocol is insecure in the honest-but-curious adversary model, it
is possible for some principal (i.e., a particupant in the protocol or an external
observer) to obtain information that should be kept hidden from the principal.
When a protocol is insecure in the malicious adversary model, it is possible for
some principal to ‘deceive’ some other principal into obtaining false beliefs.

The malicious (Dolev-Yao) model is the strongest model, in the sense that
if a protocol is secure in this model, then it is really very secure. As can be
expected, it is rather difficult to prove a protocol to be secure in this model.

2.7 Secure Multiparty Computation

In his seminal paper “Protocols for Secure Computations” [Yao82], Yao has
given a clear definition of what constitutes secure multiparty computation (SMC).
Suppose there are two principals, Alice who possesses X and Bob who pos-
sesses Y . Alice and Bob are both interested in the value of some function
f(X, Y). A protocol for determining f(X, Y) is an SMC if it satisfies the fol-
lowing conditions:

privacy The inputs X and Y are not mutually disclosed: Alice does not learn
anything about Y except f(X, Y), and Bob does not learn anything about
X except f(X, Y).

validity The protocol actually establishes f(X, Y) and not something else. If
one of the principals cheats, the other principal can detect this.

fairness Either both Alice and Bob learn f(X, Y), or neither of them learns
f(X, Y). Essentially, the probability that one principal knows f(X, Y)
and withholds it from the other principal, is very small.

24 Chapter 2. Preliminaries

autarky Bob and Alice can determine f(X, Y) without the assistance of a third
party.8

Yao showed that if f(X, Y) can be computed on a binary circuit that has
m input wires and n gates, then there exists an SMC protocol with m obliv-
ious transfers and communication complexity of O(n), in a constant number
of rounds [Yao86].9 This may seem a promising result, but the feasibility of
this solution is questionable at least. In 2004, eighteen years after publica-
tion of [Yao86], it was demonstrated that computing the rather trivial function
f(X, Y) = [X < Y] with 0 ≤ X < 16 and 0 ≤ Y < 16 would already take 1.25
seconds [MNPS04]10.

Feige, Kilian and Naor have proven that SMC is possible for any function
f(X, Y), if the condition of autarky is relaxed somewhat: their solution in-
volves a third party, which can only learn the outcome of f(X, Y), but nothing
else. This third party is then supposed to honestly inform Alice and Bob about
the outcome [FKN94]. The communication complexity of their solution, how-
ever, is not convincingly attractive, just as [Yao86].

SMC is not to be confused with secure circuit evaluation (SCE) [AF90], in
which one principal provides the input X , and the other principal provides the
function f(·). The aim in SCE is to compute f(X) without mutual disclosure
of X and f(·). Importantly, SMC is not a special case of SCE because in SMC
it is known to both participants which function is computed. Conversely, SCE
can be perceived as a special case of SMC, where the inputs are X and g(·), and
where the function f(X, g(·)) applies function g(·) to X .

2.8 Zero-Knowledge Proofs

Goldwasser, Micali and Rackoff introduced the concepts zero-knowledge and
interactive proof systems in 1985 [GMR85].

Suppose again that there are two principals, now called Peggy (the prover)
and Victor (the verifier). Peggy wants to convince Victor that she has some very
special knowledge. For example, she knows the secret ingredients to make
Coca-Cola11, she can solve any Rubik’s cube12 (shown in Figure 2.3), or alter-
natively: she knows her own private key. Peggy wants to convince Victor, but
without disclosing the special knowledge itself.

We will first focus more generally on protocols which convince Victor of
Peggy’s special knowledge. Protocols that convince Victor without disclosing
the secret are a subclass of these protocols.

8 The condition of autarky has not been explicitly named as such in [Yao82]. It is included here
for clarity.

9 This result has been generally accepted, but a proof has never been published.
10 This is on two PCs with 2.4 GHz processors, and a communication link with 617.8 MBPS band-

width and a latency of 0.4 ms. If the communication link is changed to a wide-area setting, e.g.
a bandwidth of 1.06 MBPS and a latency of 237.0 ms, the computation time increases to 4.01
seconds.

11 Coca-Cola is a registered trademark of The Coca-Cola Company.
12 Rubik’s Cube is a registered trademark of Seven Towns Ltd.

2.8. Zero-Knowledge Proofs 25

FIGURE 2.3: A Rubik’s cube. Picture courtesy of Seven Towns Ltd.

Definition 2.1 (Interactive Proof Systems13). An interactive proof system for a
set S is a two-party game between a verifier executing a probabilistic polynomial-time
(based on polynomial p) strategy (denoted V) and a prover executing a computation-
ally unbounded strategy (denoted P), which satisfies the following conditions:

completeness For every x ∈ S the verifier V always accepts after interacting with
the prover P on common input x.

soundness For some polynomial p, it holds that for every x /∈ S and every poten-
tial strategy P ∗, the verifier V rejects with probability at least 1/p(|x|), after
interacting with P ∗ on common input x.

The terms soundness and completeness have a meaning different from the
meaning in logic (where it refers to the relation between logics and models).

The soundness condition may seem tricky or weak, but observe that when
such a proof system is repeated O(p(|x|)2) times, the probability that V accepts
for an x /∈ S reduces to 2−p(|x|), which is ‘close to zero’. The fact that the
prover is not computationally bounded should not automatically be consid-
ered a structural problem either: the soundness criterion holds the prover to
not cheating, and any practical implementation of an interactive proof will be
forced to bounded computational resources by mere reality.

If Peggy would like to prove that she knows the solution for any Rubik’s
cube, she could challenge Victor for a scrambled Rubik’s cube. Victor may
choose or construct some scrambled Rubik’s cube x, and hand it over to Peggy.
Peggy could in turn, under the watchful eye of Victor, solve the puzzle. This
rather trivial interactive proof is both complete and sound. It is complete be-
cause if Peggy knows the solution for x, she can solve it. Though Victor may
not be proficient in solving Rubik’s cubes, he can easily verify Peggy’s solu-
tion. This makes the strategy sound. This trivial protocol which proves Peggy’s
knowledge of how to solve a Rubik’s cube, discloses the solution to Victor.

There is also a solution which does not disclose the solution for x to Vic-
tor: when Peggy wants to prove knowledge of the solution of Rubik’s cube x,
Peggy presents another Rubik’s cube y. Victor may then either (1) ask Peggy
to solve y, or (2) ask Peggy to show how x can be transformed into y. Victor

13 This definition, which is cited from [Gol02], is a slight variation of the original definition, which
can be found in [GMR85].

26 Chapter 2. Preliminaries

may not ask both, but he may choose one of both as he wishes. If Peggy is able
to solve every Rubik’s cube, she will be always be able to perform both the so-
lution of y, and the transformation of y into x.14 These two together constitute
the solution of x. But that solution will never be disclosed to Victor, as he will
only see (1) or (2), but never both. The first time Peggy and Victor run this pro-
tocol, Victor might believe that Peggy has had the sheer luck that she knows
the half of the solution that Victor asked for. But if they repeat the protocol k
times, the chance that Peggy does not know the solution reduces to 2−k, which
converges to 0 as k increases.

This second protocol is a zero-knowledge proof : it convinces Victor of Peggy’s
knowledge, without disclosing the knowledge itself. Roughly, a zero-knowl-
edge proof is an interactive proof in which the verifier learns nothing more
than the assertion proven. The more formal definition of ‘nothing more’ states
that anything that Victor learns by means of the protocol, can be computed
just as efficiently from the assertion proven by the protocol alone. For an
elaborate discussion of the definition of ‘nothing more’, consult [Gol02]. For
rather simple explanations and examples of zero-knowledge proofs, consult
[QQQ+90, NNR99].

It has been shown that every NP-complete set has a zero-knowledge proof
[GMW91], provided that one-way functions exist.15 This is a very valuable
result, because it can be used in a cryptographic protocol to convince other
parties that one adheres to the protocol specification without disclosing ones
private inputs. Instead of disclosing the private inputs, principals must pro-
vide a zero-knowledge proof of the correctness of their secret-based actions.
This means that any protocol which is secure in the honest-but-curious adver-
sary model can be transformed into a protocol which is secure in the malicious
adversary model [Gol02]. Unfortunately, the computational complexity and
communication complexity of such a transformed protocol which is secure in
the malicious adversary model may well be very unattractive.

There are some correspondences between secure multiparty computation
(see Section 2.7) and zero-knowledge proofs. Zero-knowledge proofs satisfy
properties roughly equivalent to the the privacy and validity properties of a se-
cure multiparty computation. Privacy because no information on the private
inputs is disclosed, and validity because an interactive proof is both sound and
complete.16 Because the roles of the principals in interactive proof systems are
not symmetric, fairness is not a relevant property. Autarky applies to interactive
proof systems in the sense that no third party is involved.

14 Remember that Peggy may choose y. If Peggy is knows the solution to x, she can construct a
y in such a way that she knows both how to solve y and how to transform y into x. If Peggy
does not know the solution to x, she can guarantee only one of both, giving her a 50% chance of
failing to provide a convincing proof on y.

15 Cryptographic hash functions are a particular type of one-way functions, and are explained in
the next chapter.

16 Again: logicians, take note that sound and complete here are used with the meaning of Defini-
tion 2.1 shown on page 25.

Part II

Tools

27

Chapter 3

There are many kinds of cryptographic hash
functions and we present many definitions. We
give a survey of design paradigms and common

applications of cryptographic hash functions. We
introduce the concept of non-incrementality,

which is necessary when we want to use
cryptographic hash functions in proofs of

knowledge.

Cryptographic Hash
Functions

Typically, cryptography is about encoding and decoding. One can take a mes-
sage and encode it in such a way that only specific people can reconstruct (de-
code) the original message from the encoded message (because they have the
right secret key). Thus, though messages are mangled in such a way that the
ciphertext looks like random noise, it is possible to reconstruct the original
message from the ciphertext. This chapter is not about this type of cryptogra-
phy. This chapter is about cryptographic functions (primitives) which have no
inverse: it is impossible (or at least hard) to reconstruct the original message
from the ciphertext. Such functions are called cryptographic hash functions1 On
first sight it may seem that this type of functions has no sensible application,
but this is not the case. In this chapter, we will show a number of well-known
applications. Later on in this thesis, we will show a whole new type of appli-
cation of this type of functions. In Section 3.6 we will elaborate on these new
applications, which will be shown in greater detail later on in Chapters 8–10 of
this thesis.

In this chapter, many hash function-related concepts necessary for under-
standing this thesis will be explained. In cases where multiple names for the
same concept exist, a footnote at the first use of the concept will list equiva-
lent names of the concept. A more detailed taxonomy of cryptographic hash
functions can be found in [Pre93, Pre98]. A highly valuable reflection on the
definition of cryptographic hash functions can be found in [And93].

Cryptographic hash functions can be regarded as a special case of hash
functions. Therefore, Section 3.1 will explain what a ‘normal’ hash function
actually is, and Section 3.2 will elaborate on what distinguishes cryptographic

1 Sometimes cryptographic hash functions are called one-way functions [DH76].

29

30 Chapter 3. Cryptographic Hash Functions

hash functions from normal hash functions. In Section 3.3 we will explain the
Random Oracle Model, which can safely be regarded the theoretical ideal of a
cryptographic hash function. In Section 3.4 two approaches to construct cryp-
tographic hash functions will be described: the Merkle-Damgård paradigm, and
the randomize-then-combine paradigm. In Section 3.5 we will give brief survey of
applications of cryptographic hash functions.

The concept of cryptographic hash functions as they are generally used is
not strong enough for our purposes in this thesis. Therefore, we will explain
and define the concept of non-incrementality in Section 3.6. In the final section
of this chapter, we will briefly summarize what properties of a cryptographic
hash function are required for the new applications described later on in this
thesis (in Chapters 8–10),

3.1 Normal Hash Functions

In this section, we will give a definition of hash functions, elaborate on this
definition, and explain what hash functions are typically used for.

Definition 3.1. A function is a hash function if it

1. takes its input from a large (possibly infinite) domain,2

2. has a bounded range,

3. is designed to minimize collisions,

4. is designed to be fast to compute, and

5. is deterministic.

The input to a hash function is often called a message or pre-image. The
output of a hash function is often called the hash value, or just simply the hash.

If two different pre-images M1 6= M2 have the same hash value (H(M1) =
H(M2)), we have a collision. Because of the birthday paradox3, one can be sure
that in practical situations collisions will occur.

A few observations about the list of properties of a hash function should be
made here. Properties 1 and 2 imply that a hash function is in practical terms
always many-to-one. Property 3 implies in practical terms that the output of
a hash function should depend on the complete input of the hash function.

2 In theory, a hash function is a function H : {0, 1}∗ → {0, 1}k , but in practice the input domain is
bounded by a very high number, for example SHA-512 (H : {0, 1}2128 → {0, 1}512) can handle
messages with a length of 2128 bits [Nat02]. To give some perspective, there are not even 2128

bits stored together on all hard disks worldwide.
3 The birthday paradox states that if there are 23 or more people in a room, the chance that two of

them have the same birthday is more than 50%. This number of 23 is much lower than what one
might expect from intuition. It stresses that the chances of a “collision” are often underestimated
by humans.

3.1. Normal Hash Functions 31

Marie Antoinette - Hash function - C229HH
HHj

Marie C. Brehm - Hash function - 3BF6
@

@
@

@RMarie Claire - Hash function - 8073����*

Marie Curie - Hash function - 04DE -

FIGURE 3.1: A ‘normal’ hash function in action. To the left is a list of (highly
non-uniform) names. All of these names are each led through a hash function,
resulting in a list of ‘more-or-less uniform’ hash values. To the right is a data
structure with allocated slots (black) and unallocated slots (white). The hash
function minimizes the chance that two highly similar names should be stored
in the same slot.

Property 4 simply follows from the general goal in computer science to pro-
duce efficient computer programs. Later on in this chapter, however, we will
see applications where “fast to compute” should apply only to specific uses of
hash functions, and not to others, such as, for example, the inverse of a hash
function. Property 5 is so obvious for computer scientists that it is often taken
for granted, and therefore it is often not considered as a part of the definition.
However, since many cryptographic primitives, such as encryption, are often
non-deterministic, we deem it important to stress that hash functions are always
and by definition deterministic.

Definition 3.1 does not mention a typical application, but hash functions are
normally used to optimize data structures, and are often not ‘visible’ from the
outside of the data structure. Range sizes of such hash functions are typically
only a few orders of magnitude larger than the number of elements stored in
the data structure (say a few thousand, or maybe a few million at the most).

In data structures it is often needed to store data values together with some
identification (an index) in such a way, that it is efficient to locate the correspond-
ing data value if given an identification. For example, a teacher would like to
find the grades of a student quickly, if he is given a student name. To pro-
vide this functionality, one needs a look-up-table (LUT), a data structure that
maps indexes to the corresponding data. A LUT has to be designed with a bal-
ance between storage requirements and search time. The naive solution is to
reserve a memory slot for each possible index. This solution wastes an incred-
ible amount of storage space, since usually the number of stored data values
is only a tiny fraction of the number of possible indexes. Indeed, the domain
of indexes may be infinite. A less naive solution could be to reserve a single
slot for a number of large chunks of possible indexes, and hope that it will not
happen that the corresponding slot will be needed more than once at the same
time.

Therefore, one has to be smart in the way the full domain of possible in-

32 Chapter 3. Cryptographic Hash Functions

dexes is divided over the allocated slots. This is where a hash function can be
used to optimize data structures. A hash function can be used to determine,
given an index, in which allocated slot the corresponding data value should be
stored. Figure 3.1 shows an example of how a hash function attributes hash
values to indexes and how this determines slot usage.

In most applications, the actual indexes have a highly non-uniform distri-
bution over the domain of possible indexes. If no precautions are taken, many
indexes will be projected onto a small set of hash values, which results in a
lot of collisions and a lot of unused slots. Thus, a hash function should be de-
signed in such a way that even for highly non-uniform input, its output should
be more or less uniform.

Moreover, it should be noted that so far, there is nothing secretive about
hash functions. Given a specific hash function, it will generally be easy to
construct different pre-images in such a way that they will lead to a collision
in a given hash function. Also, it may be easy to infer some properties of the
pre-image from the output of the hash function.

3.2 Special Properties

From a cryptography point of view, hash functions are interesting if it would
be possible to strengthen some of their properties to the extreme. Hash func-
tions need to be strengthened in such a way that, for example, for any set of
messages, (1) the set of hash values is indistinguishable from a uniform distri-
bution, and that (2) collisions are not just unlikely, but actually hard to find.
If this could be achieved while the hash function is still cheap to compute, it
would open up a whole lot of applications, most of which will be described in
section 3.5.

The special properties which distinguish cryptographic hash functions from
‘normal’ hash functions are all related to computational complexity. It defi-
nitely goes beyond the scope of this chapter, even this thesis, to give full formal
definitions of the hardness properties introduced later on in this section. There
are many different ways to define them, and the technicalities involved in these
definitions are not relevant for our purposes. Nevertheless, we feel that some
clear indication of what we mean by easy and hard should be provided.

The parameters which play a role in the complexity figures of cryptographic
hash functions are l, the length in bits of the pre-image of the hash function, and
k, the length in bits of the output of the hash function. For a given hash func-
tion, k is always given, and l (obviously) depends on the pre-image with which
one feeds the hash function. For a hash function to be easy to compute, or com-
putationally feasible, means that the number of operations is at most polynomial
in l.4 A computation is considered hard to compute, or computationally infeasible
if the number of required operations is superpolynomial in terms of the input.
Specifically, we consider a hash function hard to invert if, given a hash value h,

4 In practical cases, it is common that the number of operations is at most linear in l.

3.2. Special Properties 33

it requires O(2k) operations to find a (second) pre-image. Of course, an attack
that requires less than O(2k) may in practical terms still be infeasible.

It depends on the application how far, and in what way, the properties of a
hash function must be strengthened. There is no such thing as an all-purpose
cryptographic hash function, because requirements of one application may be
incompatible with requirements of other applications. To choose a type of
cryptographic hash function is therefore to select properties from a menu of
possible options. Some options are mutually exclusive, some options can be
combined, and some options imply others.

Deciding what properties a cryptographic hash function should have is a
very complex task, and in [And93] some stunning examples of overlooked,
but required properties in certain applications are shown. Terminology is par-
tially to blame, as the operationalization of a concept is often given the name of
the concept itself, though the operationalization is often far from perfect. The
most blatant example of this is that a hash function that is called ‘collision-free’
actually has infinitely many collisions. It is not advisable to literally interpret
the linguistic meaning of the words which make up the name of a concept.

For a hash function, one has to choose its keyedness, its freedom, its key depen-
dency level and its incrementality. The full menu of items and options to choose
from is shown in Figure 3.2.

Keyedness The first choice on the menu is whether or not the cryptographic
hash function should be keyed. A keyed cryptographic hash function is
often called a Message Authentication Code, or simply MAC.5 A MAC
takes two inputs: a key and the pre-image. In the context of MACs, the
key is a piece of information which makes computing the function ac-
tually feasible: without the key, not only the inverse is hard, but also
the ‘forward’ direction of computation is impossible. Any application of
a MAC should include a specification of which principals should know
the key, and which principals should not. Otherwise, if the key were
to be publicly known, the keyed cryptographic hash function would re-
duce to a non-keyed cryptographic hash function. (In fact, in many cir-
cumstances it reduces to even less than a non-keyed cryptographic hash
function, which will be explained later on in this section.) If it is unspeci-
fied whether a cryptographic hash function is keyed or not, a non-keyed
cryptographic hash function is assumed.

Freedom The second choice on the menu is about how obscure the relation
between the input and the output should be. In the definitions to come,
the parts between square brackets [] give the definitions for MACs. The
bitwise exclusive or is written as ⊕. In these definitions, computationally
infeasible means that there exists no polynomial-time function to perform
the task mentioned, given the usual assumptions about the complexity
hierarchy.

5 The opposite, a cryptographic hash function that is not keyed, is often called a Manipulation
Detection Code, or simply MDC.

34 Chapter 3. Cryptographic Hash Functions

One-Way A hash function H(M) [MAC (K, M)] is one-way6 if, for a giv-
en hash value h, it is computationally infeasible to construct a mes-
sage M [and key K] in such a way that H(M) = h [MAC (K, M) =
h].

Weakly Collision-Free A hash function H(M) [MAC (K, M)] is weakly
collision-free7 if, for a given message M1, it is computationally infea-
sible to find a message M2 such that M1 6= M2 and H(M1) = H(M2)
[MAC (K, M1) = MAC (K, M2)].

Strongly Collision-Free A hash function H(M) [MAC (K, M)] is strong-
ly collision-free8 if it is computationally infeasible to find any two
messages M1 and M2 such that M1 6= M2 and H(M1) = H(M2)
[MAC (K, M1) = MAC (K, M2)].

Correlation-Free A hash function H(M) [MAC (K, M)] is correlation-
free if it is computationally infeasible to find any two messages
M1 and M2 such that M1 6= M2 and the Hamming weight9 of
H(M1) ⊕ H(M2) [MAC (K, M1) ⊕ MAC (K, M2)] is less than what
one would expect if one were to compute H(M1) ⊕ H(M ′)
[MAC (K, M1) ⊕ MAC (K, M ′)] for a lot of randomly chosen M ′

[Oka93, And93]10.

Correlation freedom means in practical terms that not only collisions are
very unlikely and hard to find, but also that near misses11 are unlikely
and hard to find. Thus, correlation freedom is a strictly stronger prop-
erty than strong collision freedom. Moreover, strong collision freedom is
a strictly stronger property than weak collision freedom, and weak colli-
sion freedom is strictly stronger than one-wayness. This is summarized
in Figure 3.2.

Key Dependency For MACs, there are a few more relevant properties, which
a MAC is generally assumed to satisfy:

Key-Dependent A MAC MAC (K, M) is key-dependent if, given a pre-
image M , it is hard to compute MAC (K, M) (that is, without K)12.

Chosen Text Attack-Resistant A MAC MAC (K, M) is resistant against
a chosen text attack, if given any number of freely chosen pairs
{M ′,MAC (K, M ′)}, it is still hard to compute MAC (K, M) for any
M 6= M ′.

6 One-way is also called first pre-image resistant.
7 Weakly collision-free is also called second pre-image resistant.
8 Strongly collision-free is also called collision-resistant.
9 The Hamming weight of a binary string is the number of nonzero bits is the particular string.

10 Of course, the Hamming weight of the bitwise exclusive or (⊕) of two bitstrings is their Ham-
ming distance.

11 A near miss is, roughly, that two different messages produce hash values which, though differ-
ent, are very similar. For example, two hash values are identical except for one or two bits.

12 Or likewise, one could say that it is hard to guess MAC (K, M) with a chance of success signif-
icantly higher than 1/2k , where k is the length in bits of the hash value.

3.2. Special Properties 35

Keyedness
(mutually exclusive)

Non-
Keyed

Keyed
(MAC)-

�

×
×

Freedom One-Way
Weakly

Collision-
Free

Strongly
Collision-

Free

Correlation-
Free- - -

� � �

× × ×

Key Dependency
(only for MACs)

Key-
Dependent

Chosen Text
Attack-

Resistant
-

�

×

Incrementality
(mutually exclusive) Incremental

options
in

between

Strictly
Non-

Incremental
- -

� �

× ×
× ×

FIGURE 3.2: The relation between various properties of cryptographic hash
functions. For the menu items keyedness and incrementality, the options are mu-
tually exclusive. For the menu items freedom and key-dependency, the options are
increasingly stronger from left to right (e.g. correlation freedom implies strong
collision freedom, but not vice versa).

Incrementality For an explanation of the property of incrementality, we refer
to Section 3.6. We mention it here for completeness only.

With the complete menu given, we can introduce some commonly used
terms for cryptographic hash functions: A one-way hash function (OWHF) is
one that is not keyed, one-way and weakly collision-free. A collision resistant
hash function (CRHF) is an OWHF that is also strongly collision-free. There
also exists something like a universal one-way hash function (UOWHF), which
is stronger than an OWHF but weaker than a CRHF [NY89]. We omit its defi-
nition for reasons of simplicity.13

A Message Authentication Code (MAC) is considered to be key-dependent
and resistant against a chosen text attack. It should be noted that key-depend-
ency and resistance against a chosen text attack jointly imply that a keyed hash
function is (strongly) collision-free and one-way for someone who does not
know the key K. However, a MAC may, by design, actually not be one-way
and not collision-free for someone who does know the key K. Thus, a MAC
MAC (K, M), with a publicly known key K, should not be considered equiv-
alent to a CRHF (or even a OWHF) H(M): the MAC may have none of the
interesting properties of the CRHF (!)14

13 For completeness, there are also things like universaln, strongly universaln and strongly universalω
classes of hash functions [CW79, WC81].

14 For this reason, many experts feel that a MAC should not be considered a cryptographic hash
function at all. For completeness and clarity, we have chosen to include MACs in this survey.

36 Chapter 3. Cryptographic Hash Functions

3.3 The Random Oracle Model

It has been proven that strong collision freedom is an insufficient property to
guarantee information hiding and randomness [And93]. Information hiding and
randomness are, stated informally:

Information Hiding The hash value (H(x)) does not leak any information on
the pre-image (x).

Randomness The output of the hash function is indistinguishable from ran-
dom noise.

The history of the definition of cryptographic hash functions is littered with
problems popping up every now and then. One cycle of history typically in-
cludes: (1) the formal definition of one of the abovementioned properties, (2)
the use of a function satisfying the property in some protocol, (3) finding out
that the protocol can be broken by some attack on the hash function, and (4)
adjusting the definition of a hash function to defy the attack. The properties
of one-wayness, weak collision resistance, strong collision resistance and cor-
relation freedom should be regarded as iterations of progressive insight. Not
so long ago, strong collision resistance was considered sufficient for many ap-
plications, whereas now for the same applications correlation freedom is con-
sidered necessary. I would not at all be surprised if correlation freedom will at
some point in the near future be proven insufficient for many applications as
well.

In fact Preneel, one of the most respected researchers in the field of cryp-
tographic hash functions, recently stated that “we understand very little about
the security of hash functions” and “designers have been too optimistic (over
and over again. . .)” [Pre05].

This symptomatic practice leads to the more fundamental question of what
notion it is we would like to actually define. What ‘real, practical’ proper-
ties do we believe a ‘real’ cryptographic hash function actually has? The ideal
cryptographic hash function differs from a random function only in that it is
deterministic and easy to compute. This defies any formal expression, and the
random oracle model is the next-best thing one can get. We will introduce this
model now.

The purpose of the random oracle model [BR93], introduced by Bellare and
Rogaway, is to provide protocol designers with a clear definition of what they
can expect from an ‘ideal’ cryptographic hash function (the random oracle).
Whether such ideal cryptographic hash functions actually exist, is a completely
different question. The random oracle satisfies ‘any property one generally
addresses to the notion of a cryptographic hash function’. When designing a
protocol, this is of course very useful. A random oracle is defined as follows:

Definition 3.2 (Bellare-Rogaway). A Random Oracle R : {0, 1}∗ → {0, 1}∞ is
a map available to all parties15, good and evil, and every party is allowed to ask the
15 There are no such things as ‘private oracles’.

3.4. Design Paradigms 37

oracle only polynomially many questions. Each bit of R(x) is chosen uniformly and
independently.

In practical terms, when an oracle is given a question q, it does the following:

1. If the oracle has seen the question q before from whatever party, it gives
the answer it gave upon the previous time when it was asked question q.

2. If the oracle has never seen the question q before, it returns a random
string of infinite length.

The poser of the question may (and in all practical cases will) instruct the
oracle not to physically return the full length random string, but just a prefix
of this string of a certain given length.

It is easy to see that a Random Oracle satisfies the properties of information
hiding and randomness, as well as all the properties given in Section 3.2.

When using the Random Oracle Model, all calls to a cryptographic hash
function are replaced with calls to the oracle (which one might call a black
box [Sch98]). Then the protocol is proven correct within this setting. Because
such oracles do not seem to exist in real life, the oracle consult has to be re-
placed again by a call to a ‘suitable’ cryptographic hash function16, when such
a protocol is deployed in real life.

The Random Oracle methodology is not sound: though it can help de-
tecting protocol flaws, protocols proven secure in the Random Oracle Model
cannot be assumed secure when the oracle is replaced by an implementation
of a cryptographic hash function [CGH98]. Moreover, it is shown that to re-
place the oracle with an implementation, one faces some very serious prob-
lems [BGI+01]. Nevertheless the Random Oracle methodology is a very valu-
able one. It provided the best formalization of the properties addressed to
cryptographic hash function so far. It has been of great value to protocol design
and analysis. Protocols proven correct in the Random Oracle methodology can
‘in real life’ only be broken by an attack on the internal structure of the hash
function, within the setting of protocol interactions [BM97].

3.4 Design Paradigms

The operational design of a hash function is as complex as its definition. But
how are cryptographic hash functions actually designed? There are currently
two paradigms, the Merkle-Damgård paradigm, and the randomize-then-combine
paradigm. Both paradigms chop up the pre-image of the hash function in a
series of fixed-length blocks of bits, and then combine these blocks in some
specific way. Depending on the paradigm, the combining specifics differ.17

16 The notion of ‘suitable’ has not yet been formalized in the literature.
17 Furthermore, when these paradigms are compared with modes used in cryptography, one can

see the Merkle-Damgård paradigm has some similarities to the cipher-block chaining (CBC)
mode, and the randomize-then-combine paradigm has some similarities to the electronic code-
book (ECB) mode.

38 Chapter 3. Cryptographic Hash Functions

IV -

M1

?
f -

M2

?
f -

. . .

. . . -

Mn

?
f - Finalization - Hash Value

FIGURE 3.3: A Merkle-Damgård hash function. The message M consists of n
blocks of the same size, M1,M2, . . . Mn. The initialization vector IV has a fixed
value. The function f is called the compression function.

Because the length of individual blocks is fixed, the original message has to
be modified (padded) in such a way that its length is a multiple of the block
length. This can be done by adding zeroes at the end of the message until its
length is a multiple of the block length. Care has to be taken to make sure
that this padding procedure does not weaken the hash function by mapping
different pre-images to the same modified pre-image. This problem is solved
by encoding the length of the pre-image into the padded message.18

Merkle-Damgård In the Merkle-Damgård paradigm [Mer90b, Dam90], the
individual blocks are combined by means of a compression function f ,
which takes as input the ‘hash so far’ and the next message block. At
the beginning of the message, the ‘hash so far’ is a constant initialization
vector (IV). When all blocks have been processed, the ‘hash so far’ may
undergo some finalization, which results in the hash value. In Figure 3.3
the information flow of a hash function using this design is shown graph-
ically.

A hash function in the Merkle-Damgård paradigm is chaining (or iter-
ative): blocks earlier in the sequence influence how the blocks later in
the sequence are processed. One implication of this is that this type of
hash functions cannot be parallellized: adding more hardware cannot
speed up the computation of a hash value. Examples of hash functions
using this paradigm are MD5, SHA-1 and RIPEMD-160 [DBP96]. Merkle
and Damgård have proven that if the compression function is strongly
collision-free, then so is the whole hash function [Mer90b, Dam90].

Randomize-then-combine Another approach to cryptographic hash function
design is provided by the randomize-then-combine paradigm by Bellare et
al [BM97, BGG95, BGG94]. Instead of sequentially processing all blocks
of the message, the n blocks are processed independently by a random-
izing function g19. The n obtained results are then combined using some
well-chosen combining function �. This combining function � is chosen
in such a way that it is associative20 and commutative21 within a group.

18 This technique is sometimes called MD-strengthening.
19 In [BM97] the randomizing function is denoted with h, but we will use g instead. The ran-

domizing function could be considered the equivalent of the compression function f in the
Merkle-Damgård paradigm.

20 The parentheses may be moved or removed, e.g. ((x + y) + z) = (x + (y + z)) = x + y + z.
21 The terms may be re-ordered, e.g. x + y = x + y.

3.4. Design Paradigms 39

M1

?

1

@@R
g

Q
Q

Q
Q

Q
Qs

M2

?

2

@@R
g

A
A
A
AU

. . .

. . .

. . .

Mn

?

n

@@R
g

�
�

�
�

�
�+���r

?
Hash Value

FIGURE 3.4: A hash function of the randomize-then-combine paradigm. The
message M consists of n blocks of the same size, M1,M2, . . . Mn. The random-
izing function g combines a message block Mi with its sequence number i. The
combining function� combines the results of all invocations of the randomizing
function g into one hash value.

Thus, there is also an identity element22 1 and an inverse23 −1 with re-
spect to the combining function�. The function g takes as input not only
a message block, but also the sequence number of the message block.
This has to do with the commutative nature of the combining function:
without the sequence number it would be trivial to construct collisions
for the hash function as a whole. A graphical picture of the information
flow in a hash function of this paradigm is shown in Figure 3.4.

There are various options for choosing a combining function, such as
multiplication within a suitable group G (MuHASH) or modular addi-
tion (AdHASH). Bellare and Micciancio have proven that if the discrete
logarithm in G is hard and g is “ideal”, then MuHASH is strongly colli-
sion-free; and that AdHASH is a UOWHF if the weighted knapsack problem
(which they define)24 is hard and g is “ideal” [BM97]. Similar results have
been obtained by Impagliazzo and Naor [IN96]. Computationally these
combining operations are cheap. The bitwise exclusive or (⊕) is no good
candidate for the combining function in the case of a non-keyed hash:
it can easily be proven insecure [BM97]. However, within a MAC the
bitwise exclusive or can be applied [BGR95].

22 x� 1 = x
23 x� x−1 = 1
24 The weighted knapsack problem is a modification of the subset sum problem, which is a special

case of the knapsack problem. These are all problems in combinatorial optimization. The subset
sum problem and the knapsack problem are well known NP-complete problems. The weighted
knapsack problem is defined in [BM97] and is assumed to be NP-complete.

40 Chapter 3. Cryptographic Hash Functions

hash function bit size
year of

publication reference status
MD5 128 1992 [Riv92] obsoleted by [WY05]
RIPEMD-160 160 1996 [DBP96]
SHA-1 160 1992 [Nat92] obsoleted by [WYY05]
SHA-224 224 2004 [Nat04]
SHA-256 256 2002 [Nat02]
SHA-384 384 2002 [Nat02]
SHA-512 512 2002 [Nat02]

TABLE 3.1: Some commonly used cryptographic hash functions and the size of
the hash values they produce.

Because of the independency of the computation of g, and the nature of
the combining function �, the computation of a hash value can be done
in parallel. There is another advantage of the randomize-then-combine
paradigm: it is incremental. This roughly means that once a hash value
h = H(x) is computed, and the pre-image x is modified into x′, the time
required to compute h′ = H(x′) is “proportional” to the “amount of dif-
ference” between x and x′ [BGG94]. The implications of incrementality
will be addressed in Section 3.6.

In both paradigms, there is a strong dependency on the strength of an in-
ternal function: the compression function f in case of the Merkle-Damgård
paradigm, and the randomizing function g in case of the randomize-then-com-
bine paradigm. Neither paradigm gives specific instructions on how to con-
struct this function, except that it should be strongly collision-free. In practice,
these functions are chosen to be complex myriads of bitwise operations such
as shifts, rotations, ors, exclusive ors, ands and negations. That such a function
f or g constructed in this way is strongly collision-free, is no more than a bold
claim. For the two most-used hash functions MD5 and SHA-1, the conjectures
that its compression functions are strongly collision-free, have been shown to
be overly optimistic [WY05, WYY05].

The fixed size of the hash value influences the strength of the corresponding
cryptographic hash function: it is trivial to find collisions for a hash function
that produces hash values of, say, only 8 bits in length, and it will be impossi-
ble to find collisions on a good cryptographic hash function which creates hash
values of 216 bits long. What hash sizes are practical and whether it is computa-
tionally feasible to find collisions depends on the state of the art of computing
power: if the hash size is chosen too small, collisions are easily detected, and
if it is chosen too large, the computational and storage requirements grow too
large. For illustrational purposes, Table 3.1 shows the hash sizes for various
hash functions, commonly known and used in 2006.

3.5. Common Applications 41

3.5 Common Applications

In this thesis, we will introduce a new application domain of cryptographic
hash functions. To be able to see how our application differs from existing
applications of cryptographic hash functions, we will describe the spectrum of
uses for cryptographic hash functions:

1. password protection

2. manipulation detection

3. optimization of existing cryptographic signature schemes

4. creation of new cryptographic signature schemes

5. random-number generation

6. creation of (symmetric) encryption schemes

7. commitment schemes

8. computational currency and spam protection

In all applications, the description of the hash function is public. We will ex-
plain the applications one by one in more detail:

1. Probably the oldest application of cryptographic hash functions is protec-
tion of the password file. On a computer system with password-protected
user accounts, one needs to store passwords in such a way that (1) the
passwords cannot be derived from the password file, but (2) the pass-
word file should contain enough information to positively identify some-
one who claims to know a specific user password. The solution is to store
the user name and the hash value of the password together in the pass-
word file25.

2. The best known application of cryptographic hash functions is to protect
data from being manipulated by a malicious party: a hash value can be
used to establish message integrity. Computing hash values and com-
municating these over the same communication channel as the message
itself will however not help anything, since the hash value is subject to
the same manipulation powers of the adversary as the original message.

When a MAC is used, the integrity of the message depends on the se-
crecy of the key used: it depends on the quality of the key management26.
When a non-keyed cryptographic hash function is used, the integrity of
the message is transferred to the integrity of the hash value: the hash
value needs to be protected against manipulation in some way or another.
One way to accomplish this is to use a separate authenticated communi-
cation channel, another way is to cryptographically sign or encrypt the

25 This solution is not without problems, though. Badly chosen passwords can be detected by
dictionary attacks.

26 Note that the keys used in MAC are symmetric: the sender and the verifier share the same key.
The method for message authentication presented by Tsudik in [Tsu92] is roughly equivalent to
the use of a MAC.

42 Chapter 3. Cryptographic Hash Functions

hash value, thereby reducing the problem of integrity to a problem of
key management.

3. Transferring the integrity of a large amount of data to the integrity of a
smaller amount of data (as explained in the previous application) can also
help to optimize schemes in which large amounts of data must be crypto-
graphically signed. Methods for cryptographic signatures are generally
computationally expensive, and computational costs often grow super-
linearly in the size of the data to be signed. This makes cryptographically
signing a message of one megabyte in size very — if not prohibitively —
expensive. Instead, one can compute the hash value of the same message,
and sign the hash value [Dam88]. Using this two-step signature scheme,
the cost of signing a message is linear in size of the input instead of super-
linear. Moreover, this scheme saves storage space, since a cryptographic
signature is generally about the same size as the message signed. When
using two-step signing, the signature is about the size of the hash value,
instead of the size of the original message.

In communication, cryptographic signatures facilitate integrity, authen-
ticity (the receiver can verify that the sender is who he claims he is) and
non-repudiation (the sender cannot deny having sent the message). In
software protection, cryptographic signatures facilitate the detection of
malware and Trojan horses.27 Theoretically, cryptographic hash functions
are not required for these applications, but cryptographic hash function
help to optimize these applications up to the point that they are actually
feasible.

4. It is also possible to build cryptographic signature schemes from cryp-
tographic hash functions alone, but these schemes are merely a proof of
concept and they are not very practical because they require a large pub-
lic storage. There are four known hash-based digital signature schemes:
Diffie-Lamport [DH76, page 35], Winternitz [Mer90a, page 227], Merkle
[Mer90a] and Rabin [Rab78].

5. Yet another use of a cryptographic hash function is to use it to build a
pseudorandom number generator (PRNG) or even a cryptographically se-
cure pseudorandom number generator (CSPRNG). In the latter case it is
required to keep the pre-image28 secret.

6. The output of a CSPRNG can in turn be used as a keystream for a one-
time pad (OTP)29, which is an algorithm for symmetric encryption30. An
algorithm for symmetric encryption can also be built directly from a cryp-
tographic hash function, by making it the F-function in a Feistel cipher

27 The best known example of such a malware detection software is Tripwire, which runs on UNIX
systems.

28 In the design of PRNGs, the pre-image is also called the seed.
29 The OTP is also called the Vernam cipher.
30 Of course, a true OTP uses a keystream that is truly random, and does not depend on a seed of

a fixed size. Therefore, an OTP using a hash function based keystream is not unbreakable, as
opposed to a true OTP.

3.5. Common Applications 43

[Fei73, FNS75]31.

7. Commitment schemes can also be built using cryptographic hash func-
tions. In a game or protocol, a player can commit to a particular chosen
value M without instantaneously disclosing the value by publishing only
the hash value H(M). Later on in the game the player must disclose M .
Since the player has published H(M), he cannot choose to publish an-
other message M ′ since H(M ′) 6= H(M) [DPP94, Dam97, CMR98].

8. A relatively recent application of cryptographic hash functions is to cre-
ate some kind of computational currency unit. The idea is this: the dif-
ficulty of finding a collision in a cryptographic hash function depends
on the bit length of the hash values it produces. Thus, by trimming the
size of a hash value to an appropriate length, it is possible to create puz-
zles that are moderately hard to solve, but at the same time still tractable
(cf. [DN93]). For example, it is feasible to create two pre-images such that
the first 20 bits of their hash values are the same32. We call this a partial
hash collision. The interesting feature here is that though it is costly to find
partial collisions, it is very cheap to verify them. By showing two pre-
images which result in a partial hash collision, one can ‘prove’ to have
invested a certain amount of computation time. This can be used to com-
bat spam, by accepting only emails for which sufficient computation time
has been invested (e.g. Hashcash [Bac02]). It can also be used to construct
a transferable currency unit in peer-to-peer (P2P) systems [GH05].

As can be seen from the examples just described, cryptographic hash func-
tions have a lot of applications. This does not mean that every application of
a cryptographic hash function is legitimate in the sense that it offers crypto-
graphic guarantees. For example, the hash values used to identify files in P2P
filesharing systems do not provide any guarantees on the files exchanged via
such a P2P filesharing system. Fortunately, no such guarantees are suggested
by P2P systems. That it is easy to illegitimately assume guarantees from the use
of a cryptographic hash function is demonstrated by security expert Schneier.
His first explanation on cryptographic hash functions reads [Sch96, page 31]:

“If you want to verify someone has a particular file (that you also
have), but you don’t want him to send it to you, then you ask him
for the hash value. If he sends you the correct hash value, then it is
almost certain that he has that file.”

31 In general, when choosing an encryption algorithm, the option of a hash-function based one
may not be the best choice in terms of efficiency. Nevertheless, there may be legal reasons to
choose for such a function. The United States of America have strict rules for the export of cryp-
tographic software; cryptographic software is considered a type of military arms. Within these
export rules, cryptographic hash functions are sort-of neglected. Thus, to legally circumvent
these export limitations, it can help to use encryption algorithms based on cryptographic hash
functions. In the years just before ‘9/11’, these export rules have been relaxed somewhat, but
there are still limitations.

32 By feasible we mean here that such a collision can be found within approximately one second
on workstation hardware current in 2006.

44 Chapter 3. Cryptographic Hash Functions

Equivalent claims are made in [BAN89b, AvdHdV01]. The precise claim
in [BAN89b] will be the subject of Chapter 5. Unfortunately, the claim is false.
The problem is that in the above situation sketch, there is no mention that the
file should be kept secret. If there is a third person who is willing to publish
the hash value of the file, anybody can ‘prove’ possession of the file.

However, it is possible to use cryptographic hash functions to prove posses-
sion of specific information. It is more complex than Schneier assumed. Chap-
ter 8 will address the specifics of this application, which are far from trivial.
Chapters 9 and 10 of this thesis will actually show protocols for this applica-
tion. These protocols require a specific kind of cryptographic hash function:
the non-incremental hash function. In the next section, we will explain and de-
fine what that is.

3.6 (Non-) Incrementality

Bellare, Goldreich and Goldwasser have introduced the randomize-then-com-
bine paradigm to show that incremental cryptographic hash functions can be
built. The concept of incrementality deserves attention, because it shows that
certain cryptographic hash functions possess properties we do not desire for
our purposes in this thesis. In this section, we will explain what we do require.
To give some context to our definition, we will first informally explain what
incrementality is.

Suppose one wants to send to many different people a signed message that
is essentially the same, except for some small parts, such as the addressee field
or the date. For every single individual message, the signature has to be recom-
puted. As the number of similar signed messages grows, the cost of computing
the signatures grows as well. Does this mean that signing one million messages
is one million times as expensive as signing just one message? In fact, it need
not be. Just as buying one million copies of the same book is not one million
times more expensive than buying just one copy, it is possible to get a quantity
discount on the computational cost of cryptographic signatures.

The terms and conditions of the discount are as follows: the signature
should use a two-step signature scheme, and the hash function involved
should be incremental. The original message must be hashed in the ‘old-fash-
ioned’ way at least once. To obtain a hash value for every consecutive message,
a procedure should be followed, which uses the hash value of the original mes-
sage, and a description of how the current message differs from the original
message. The amount of discount you get on the signature consecutive mes-
sage is inversely correlated to the size of the difference description. Thus, if the
body of messages you wish to sign is highly homogeneous, you will get a large
discount. If on the other hand the messages are unrelated, your discount will
be very small. Similarly, the discount one may get when ordering one million
different books will never be as big as when one orders one million copies of
the same book. In Figure 3.5 the idea of incremental hash functions is shown.

The practical advantage of incremental hashes and signatures is question-

3.6. (Non-) Incrementality 45

���
�

�
��

�
�

�

�
�

��

�
�

�
�

�
�

�
�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�
�

�
�

�
�

�
�

��

�
�

�

�
���
���

���
�

�
��

�
�

�

�
�

��

�
�

�
�

�
�

�
�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�
�

�
�

�
�

�
�

��

�
�

�

�
���
���

���
�

�
��

�
�

�

�
�

��

�
�

�
�

�
�

�
�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�
�

�
�

�
�

�
�

��

�
�

�

�
���
���Dear ,

blah blah
bla-bla bla
blah bla!
regards,

Dear John,
blah blah
bla-bla bla
blah bla!
regards, M

Dear Sean,
blah blah
bla-bla bla
blah bla!
regards, M

Dear John,
blah blah
bla-bla bla
blah bla!
regards, W

Dear Sue,
blah blah
bla-bla bla
blah bla!
regards, M

message number 1 2 3 · · · ∞

individual cost size(M1) size(∆2) size(∆3) size(∆i)
incremental
average cost size(M1) size(M1)+size(∆2)

2
size(M1)+2·size(∆)

3
size(∆)

FIGURE 3.5: Incremental hash function in action. For the first message, the
full message must be consulted. For the next messages, the computation of
the hash depends only on the amount of difference of the current message to
the first message. As the number of messages grows to infinity, the average
cost of hashing a message converges to the average amount of difference. The
description of the difference between M1 and Mi is denoted ∆i, and size(∆)
denotes the running average of size(∆). The size of ∆ is roughly proportional
to the size of the ‘not-wiped out’ part of messages 2, 3 and onwards.

able. The cost of physically sending a signed message is still proportional to
the length of the message. Speeding up the process of creating the signature
cannot change that, and will therefore not shorten the whole process of signing
and sending a message by more than a constant factor. In fact, the advantages
of incremental hashing and signing do only matter if the person generating
the hash of the message does not send the message as often as he signs it. In
[BGG94, BGG95] some application domains of incremental hashes and signa-
tures are described, including virus protection and signed streaming media.

Incrementality offers some slight advantages, but it also has some clear dis-
advantages. Consider the following situation:

Bob wants Alice to prove she possesses M , but Bob doesn’t want
Alice to send the full message M . Bob knows that the hash value
h of M is publicly known, and therefore Bob certainly cannot ask
Alice to send just h. Bob decides to create a ‘difference description’
∆, which describes how to transform M into M ′.

Bob asks Alice to present the hash value h′ of M ′.

This protocol is faulty: Alice can ‘prove’ possession of M by exploiting the
incrementality of the hash function. That is, Alice can construct H(M ′) without
possessing M or being able to construct M . Thus, for a protocol like this one to
be correct, it is necessary that the hash function is not incremental. In that case,
the only way to compute H(M ′) is to construct M ′ first, and then compute its
hash value.

46 Chapter 3. Cryptographic Hash Functions

It is not trivial to give a precise formal definition of non-incrementality.33

Let us give an informal description of the notion of non-incrementality:

Non-Incremental A cryptographic hash function is non-incremental, if it is
always necessary to have the full pre-image at hand to compute the hash
value of this pre-image.

Hash functions from the randomize-then-combine paradigm are obviously
incremental, so that kind of hash functions will not do for our purposes. Hash
functions from the Merkle-Damgård paradigm are sort-of incremental, but in a
less obvious way. To verify this, see that to compute H(M1 ·M2), the algorithm
computing the hash value passes through a local state where M1 has been read,
but M2 not yet. This local state can be stored. To compute H(M1 ·M ′

2), where
M2 6= M ′

2, it is sufficient to know the local state and M ′
2. This problem can be

circumvented by defining H(M) to be equal to HMD(M · M): the pre-image
M is ‘fed’ twice through the Merkle-Damgård hash function HMD(·). As a
result of chaining (blocks earlier in the sequence influence how the blocks later
in the sequence are processed), all blocks of the first iteration of message M ,
influence the processing of all blocks of the second iteration of M . Therefore,
it is not possible to store a local state that allows one to compute H(M1 ·M2)
without knowing M1.

The solution we propose, to feed the pre-image twice through the hash
function is not totally new; Ferguson and Schneier have proposed this solu-
tion and similar solutions to fix the length-extension weakness of the Merkle-
Damgård paradigm [FS03, pages 90–94]. This is not unexpectedly, as length-
extension and incrementality are interrelated properties.34

3.7 Conclusion

In this chapter, we have explained what a cryptographic hash function is, and
elaborated on some of the difficulties in defining cryptographic hash functions.
Moreover, we have shown that incrementality, a property often considered a
feature of some cryptographic hash functions, can actually be a drawback. We
have informally but precisely defined non-incrementality, a property that guar-
antees the specific function does not have this drawback.

In this thesis, we will give a new application of cryptographic hash func-
tions. For this application, we require that it is

1. non-keyed,
2. correlation-free and
3. non-incremental.

We will prove our protocols correct in the random oracle model.
33 Given the general history of hash function definitions which is sparkled with erroneous defini-

tions, we do not feel safe enough yet to give a formal definition at this point.
34 It is beyond the scope of this chapter to explain the length extension weakness of the Merkle-

Damgård paradigm, consult [FS03, pages 90–94] for a good explanation.

Chapter 4

Authentication logics (such as BAN and GNY)
offer a way to reason about the knowledge of

principals in a security protocol. It is explained
how such logics work and what their caveats are.

Authentication Logics

Formal analysis of security protocols requires one to reason about the knowl-
edge of the participants (principals) in the protocol. Critical for a security
protocol is that it should not only guarantee that certain information is com-
municated, but also that certain other information is not communicated. For
example, external observers should typically not be able to infer session keys
which are exchanged in a security protocol.

BAN logic [BAN89b, BAN89a]1, introduced by Burrows, Abadi and Need-
ham, is an epistemic logic2 crafted for analyzing security protocols. It mod-
els at an abstract level the knowledge of the principals in a protocol. The
principals are supposed to have only polynomially many computational re-
sources. It was the first logic of its kind, and has had a tremendous influ-
ence on protocol analysis: it has helped revealing weaknesses in known pro-
tocols, and many logics are based on it, among others GNY logic. We refer
to BAN logic and all the variations of it as authentication logics. This is not
to say that there has been no criticism of BAN logic. For one thing, a full se-
mantics is lacking, and many attempts have been made to fix this problem
[AT91, GNY90, KW94, WK96, vO93, SvO94, SvO96, Dek00]. Moreover, the
logic fails to detect some very obvious protocol flaws [Nes90].

The general consensus about BAN-descendant logics appears to be that
these logics are computationally sound (detected protocol flaws are indeed
flaws), but certainly not computationally complete (they may fail to detect cer-
tain protocol flaws). Recent work includes attempts to bridge the gap between
the formal (i.e., BAN-descendant) approach and the computational approach
to security logics [AR02], and attempts to obtain completeness results for BAN-
descendant logics in a kind of Kripke-style semantics [CD05a, CD05b]. In the

1 See Appendix A.1 for a taxonomy of the papers presenting the BAN logic.
2 For a thorough treatment of epistemic logic, consult [FHMV95, MvdH95].

47

48 Chapter 4. Authentication Logics

Multi-Agent Systems world, BAN logic has been widely used (see for example,
[AvdHdV01]).

Authentication logics play an important role in this thesis. In Chapter 5, we
will prove that BAN logic is not ‘sound’, due to an inference rule that tries to
model cryptographic hash functions. In Chapter 6, we will extend another au-
thentication logic, GNY logic, in such a way that our protocols can be analyzed
using GNY logic, which we do in Chapter 9. In the current chapter, we will
explain the basics of authentication logics.3 Where we write formulae, this will
be formulae in GNY logic (which is summarized in Appendix B).

4.1 The Goals of an Authentication Logic

The main idea of authentication logics is that we model for each principal,
what he knows, and what he can derive. What principals know includes what
principals know about the knowledge of other principals: authentication logics
are a special kind of epistemic logic. The knowledge of principals is modeled by
explicitly stating what inference capabilities principals have, what principals
know a priori, and what principals observe during a protocol run. The total
knowledge of a specific principal is the logical closure of all capable inferences
over the knowledge he has so far: A principal may know X a priori, infer from
this Y , and if Z is inferrable from Y , the agent by definition also knows Z (and
so on).

In most authentication logics, the malicious adversary model is used, which
means that it is assumed that an adversary can overhear and intercept every
message sent, and that an attacker can send any message he can synthesize.
Message synthesis of the attacker is however limited to what is cryptograph-
ically feasible, i.e., the attacker has only polynomial computing power and
cannot perform brute-force analysis to find secret keys [DY83]. (See also Sec-
tion 2.6.)

Thus, principals are logically omniscient in the sense that they may apply
some given inference rules unboundedly often. However, principals are not
‘mathematically omniscient’, i.e., they are not capable of all valid inferences.4

Proving that security protocols meet their specification generally involves
proving three properties of a protocol:

1. the participating principals learn what they should learn,

2. what the participating principals learn is indeed true, and

3. no principal learns facts he ought not to know.

Thus, a correctness proof requires both a proof of things that are learned,
and things that are not learned in course of a protocol run. Authentication

3 For alternative introductions, consult [GSG99] and [SC01].
4 In particular, principals cannot perform brute-force attacks on cryptographic primitives.

4.2. The Taxonomy of Any Authentication Logic 49

assumptions Alice knows Bob’s public key, and Bob knows his own secret key.

the protocol itself Alice chooses a random number and sends it to Bob. Bob
signs this number and sends it back to Alice.

claims After Alice receives Bob’s message, she knows Bob received and read
her message containing the random number.

FIGURE 4.1: The signing parrot protocol, plain description

logics generally focus on the learning part, and less if at all on the not-learning
part. If an analysis of a protocol using an authentication logic does not expose
a flaw, this means that properties 1 and 2 are not violated, of course assuming
that the logic itself is ‘correct’. In Chapter 6, we will extend GNY in such a way
that property 3 is also addressed.

The specification of a protocol consists of the the following information:

Assumptions A description of the situation before the protocol is executed:
who are the players involved (the principals), what is the knowledge of
the principals, the reasoning powers of the principals, and the knowledge
and reasoning powers of those who do not participate in the protocol.

The Protocol Itself A description of the messages that are exchanged in the
protocol: how they are constructed, by whom, and when they are sent.

Claims A description of what the protocol supposedly provides: in what way
the knowledge of the principals has changed since the beginning of the
protocol, and in what way the knowledge of principals, including exter-
nal observers, has not changed since the beginning of the protocol.

For example, consider the protocol shown in Figure 4.15. We will use this
protocol in the rest of this chapter in our examples.

4.2 The Taxonomy of Any Authentication Logic

In authentication logics, messages are not modeled as bit strings (as they are
in the ‘real world’), but as formulae. The principals in a protocol send one an-
other formulae, and privately possess formulae. When a principal possesses a
formula this just means he has it stored in his memory. Principals can construct
(synthesize) new formulae by applying certain given methods. For example,
one such method is symmetric encryption: if a principal possesses a message
M and a key K, he can construct the message {M}K , the symmetric encryption
of M under K.

5 This trivial protocol does not appear to have a name yet. For easier discussion, we will baptize
it the signing parrot protocol. This protocol falls in the category often referred to as “Don’t try this
at home!” Bob’s behavior of signing any message he sees, is very unwise.

What happens in the protocol however, does have a name. In strand-space terminology, it is
called incomping authentication [Gut01, Gut02].

50 Chapter 4. Authentication Logics

Similarly, principals can analyze (deconstruct) messages: if a player pos-
sesses {M}K and K, then he can decrypt {M}K and infer M , so he can add
M to his ‘possessions’. If on the other hand a principal possesses {M}K but
not the decryption key K, it is (of course) not possible to infer M . In this way,
certain parts of the communication may be hidden from some principals or
external observers.

An authentication logic essentially consists of (at least) four parts:

1. A Formal Language that describes what formulae exist (i.e., what kind
of messages can be exchanged). Moreover, the language describes what
kinds of assertions can be made. Assertions typically relate formulae
to principals. The formal language of GNY logic is summarized in Ap-
pendix B.1.

The expressive power of the language directly influences the class of mes-
sages that can be expressed in the logic. For example, if there is no nota-
tion accommodated for asymmetric encryption, the logic cannot reason
about it. A similar point also holds for statements: if for example the
language does not distinguish between possessing a formula and believ-
ing the formula, one has to assume a principal believes all formulae he
possesses.

2. A Protocol Idealization Method that describes how to translate a pro-
tocol description into the formal language of the logic. This results in
a protocol description in the form of an ordered list of send statements
S1, · · · , Sn, each Si in the form P → Q : X (read: ‘P sends Q message X’)
where P and Q are principals (P 6= Q) and X is a formula in the formal
language of the logic.

A protocol idealization method typically omits implementation details
and tries to focus on the beliefs that are to be conveyed in the message.
Protocol idealization is a manual task performed by humans.

3. A Protocol Parser which is an algorithm that translates an idealized pro-
tocol into an ordered list of step transitions. This list is the basis for further
analysis of the protocol.

Most protocol parsers are very trivial, but sometimes the parser does
something that could be considered a kind of advanced annotation of
the protocol.6

4. A List of Inference Rules or Logical Postulates which defines what a
principal can do to construct and analyze formulae. In the following
generic presentation of an inference rule with name N , X1, X2, · · ·Xn,
Y1, Y2, · · ·Ym represent statements in the formal language of the logic.

N
X1, X2, · · ·Xn

Y1, Y2, · · ·Ym

6 Our notion of a protocol parser is a generalization of the protocol parser notion described
in [GNY90].

4.2. The Taxonomy of Any Authentication Logic 51

assumptions A 3 +K, A |≡+K7→ B, B 3 −K, A 3 N, A |≡](N)

the protocol itself 1. A → B : N
2. B → A : {N}−K

claims A |≡ B 3 N

FIGURE 4.2: GNY idealization of the signing parrot protocol. Alice and Bob
are denoted A and B. Bob’s public key is +K and his private key is −K. The
randomly chosen number is denoted N . For a summary of the formal language
of GNY logic which is used here, consult Appendix B

If X1, X2, · · ·Xn all hold, then Y1 and Y2 up to Ym may all be inferred.

The inference rules of GNY logic are summarized in Appendix B.2.

The list of inference rules is typically hand-crafted, small, and often fully
given. The set of inference rules should be constructed in such a way
that all notions attributed to elements of the language are expressed in
the inference rules. For example, if it is possible to formulate a statement
essentially saying ‘principal P knows X and Y ’, then there should be
inference rules accommodating the inference of ‘principal P knows X’
and ‘principal P knows Y ’ from the original sentence.

To illustrate what the formal language and an idealized protocol look like,
the GNY idealization of the signing parrot protocol is shown in Figure 4.2.
Appendix B lists the formal language of GNY logic that is used in the figure.

The formal language of authentication logics often has a rather limited ex-
pressive power. In particular, explicit negations and disjunctions are oddities
(with the notable exception of SVO logic [SvO94]). Implicit negations can how-
ever be found easily: most formal languages have a construct denoting that
some cryptographic key K is only known to two (explicitly named) principals.
In BAN and GNY logic, which will be explained later, this is the construct
P

K↔ Q. This of course implies that other principals do not know the key K.
However, this very same construct also suggests that none of the two named
principals would disclose the key K, and it remains the question whether this
is realistic. And while disjunctions are not facilitated by the formal language,
there are often inference rules which resemble disjunction elimination7.

Of course, with poor support of disjunctions and negations, these logics
can hardly if at all model protocols which have conditional branching: where
whether some protocol steps are executed depends on the outcome of previous
protocol steps. If one wants to analyze such a protocol using an authentication
logic, one has to do this ‘outside of the logic’, that is: rely on natural language
and while doing so, remain precise and concentrated.

7 For an example of such an inference rule, look at rule I3 of the GNY logic, shown in Appendix B
on page 186. The ∗ sign in the first condition denotes that P did not send the message, and

P
S↔ Q denotes that only P and Q know S. From this it is inferred that Q sent the message.

52 Chapter 4. Authentication Logics

[A 3 +K, A |≡+K7→ B, B 3 −K, A 3 N, A |≡](N)]
(A → B : N)

[B C ∗N]
(B → A : {N}−K)

[A C ∗{N}−K , A C {N}−K , A 3 {N}−K ,

A 3 H(N), A |≡ φ(N), A |≡ B |∼ N, A |≡ B 3 N]

FIGURE 4.3: GNY annotation (‘correctness proof’) of the signing parrot pro-
tocol. The assertions in the last postcondition are obtained by application of
inference rules T1, P1, P4, R6, I4 and I6 (in that order). The very last assertion
is equal to the claim of the protocol.

4.3 Using an Authentication Logic

When one analyzes a protocol using an authentication logic, one searches for a
legal annotation of the protocol. A legal annotation is an annotation with some
special properties. First, let us explain what an annotation is. An annotation
of a protocol S1, · · · , Sn is roughly something like a transcription in Hoare
logic [Hoa69]:

[assumptions] S1 [assertion 1] · · · [assertion n− 1] Sn [conclusions]

An assertion is a (comma-separated) list of assertions in the formal lan-
guage, interpreted as a conjunction. Obviously, the assumptions and the con-
clusions are a special type of assertion.

The protocol parser provides a list of step transitions. A step transition has
the form

[precondition] (P → Q : X) [postcondition]

For many logics, including BAN and GNY, the precondition is of the form
Y , and the postcondition is of the form Y, Q C X , which essentially means
that whatever was true before the protocol step remains true afterward, and
principal Q observes what he is told, namely X . Moreover, the assertion QCX
may be inserted directly after the protocol step. The protocol step itself is the
justification for this assumption8.

Note that the protocol parser does not enforce that the sending party is ac-
tually capable of sending the message (i.e., P 3 X is not a formal precondition).
In particular, the protocol assumption B 3 −K remains unused in the analysis,

8 The GNY protocol parser sometimes inserts the not-originated-here sign (∗) into the inserted
assertion. The rules for adding this sign are somewhat complicated, and will for simplicity not
be explained in this thesis. These rules can be found in [GNY90, Section 5].

The not-originated-here sign (∗) rougly means, that the principal who receives a message
∗X , has not previously sent a message X .

4.3. Using an Authentication Logic 53

1 A 3 +K (B → A : {N}−K)
2 A |≡+K7→ B 7 A C ∗{N}−K [2]
3 B 3 −K 8 A C {N}−K T1(7)
4 A 3 N 9 A 3 {N}−K P1(8)
5 A |≡](N) 10 A 3 H(N) P4(4)

(A → B : N) 11 A |≡ φ(N) R6(10)
6 B C ∗N [1] 12 A |≡ B |∼ N I4(8, 1, 2, 11)

13 A |≡ B 3 N I6(12, 5)

FIGURE 4.4: Heavy GNY annotation of the signing parrot protocol. After each
assertion which is not an assumption, a justification is placed. This justifica-
tion is either the result of a communication step inserted by the protocol parser,
denoted with the protocol step between [square brackets], or the name of the
inference rule applied, together with the statement numbers of its satisfied pre-
conditions.

while it is neccessary since otherwise B cannot send the message {N}−K . This
issue is addressed further in Section 6.2.2.

To create a legal annotation of a protocol is to weld all step transitions of a
protocol together such that:

• the precondition of the first step contains only the protocol assumptions;

• the postcondition of the last protocol step contains the protocol claims;

• except for the protocol assumptions and assertions added by the protocol
parser, any assertion is derivable (by means of the inference rules) from
its prefix9.

We will use the final requirement, derivability, in a rather strict sense: every
statement is obtainable from its prefix by application of at most one inference
rule. This does not narrow the class of protocols for which legal annotations
can be found, while at the same time it makes it easy to verify whether an
annotation is legal. Moreover, we allow repetitions of assertions to be omitted
for ease of reading. An example of a legal annotation of a protocol is shown in
Figure 4.3.

This type of annotation can be difficult to read and interpret, and therefore
in this thesis, we will be a bit more explicit. We will write every statement
on an individual line, together with a line number and the applied inference
rules for easy reference. An example of such a ‘heavy annotation’ is shown in
Figure 4.4.

It should be noted that this type of logic is monotonic within a single proto-
col run: all assertions are stable, i.e., once true they remain true (for the time of
the protocol run). To prove that a protocol is correct with repsect to a particular
claim to give a (constructive) proof of the protocol claim by means of a (heavy)
annotation.

9 i.e., the protocol annotation before (‘left of’) the statement in question.

54 Chapter 4. Authentication Logics

4.4 The BAN Logic Debate

Authentication logics provide a very intuitive means of analyzing security pro-
tocols. Whether the approach is also accurate has been subject of a very ex-
tended debate. The main criticisms of BAN logic regard the following proper-
ties of the logic:

1. the semantics,

2. the notion of belief,

3. the protocol idealization method,

4. the honesty assumption, and

5. the incompleteness.

Appendix A.2 discusses these criticisms in more detail. All existing criti-
cisms of authentication logics might suggest that the approach is rather worth-
less, but on proper inspection the host of critiques deserves another interpre-
tation: The way of reasoning in authentication logics is highly valuable, and
that is why so much effort has been taken to improve the original BAN logic. In
this thesis, the constructive contribution to authentication logics can be found
in Chapter 6.

Our opinion on authentication logics is that the general approach is simply
wonderful, while the operationalization of the approach is rather troublesome.
In particular, authentication logics in general should not be blamed for prob-
lems with early, individual instances of authentication logics, such as BAN logic.
The methodology is simple, intuitive and powerful. Therefore, we feel authen-
tication logics deserve to be one of the basic tools for protocol analysis (next to
other methodologies such as strand spaces and the computational approach).

We are not blind to the shortcomings of BAN logic and its descendants. In
Chapter 5, we even prove that BAN logic is not ‘sound’, and Section 6.1 is not
particularly praising, either.

4.5 Conclusion

In this chapter, we have briefly explained how an authentication logic works.
The role of the formal language, the inference rules, the protocol parser, asser-
tions, annotations and legal annotations have been explained. We have intro-
duced the concept of a heavy annotation, which is a legal annotation that is easy
to verify.

In the next chapter (Chapter 5), we will prove that BAN logic is not ‘sound’,
and in Chapter 6 we will extend GNY logic in such a way that our protocols
can be analyzed in Chapter 9.

For further reading on authentication logics, consult [SC01].

Chapter 5

BAN logic, the ‘mother of all authentication
logics’, does not model hash functions in an

appropriate way. It is possible to derive false
statements from true assumptions, therefore,

BAN logic is not ‘sound’ – even without a
semantics. In the (limited and heavily debated)

semantics that BAN logic has, this problem also
shows up.

‘Unsoundness’ of BAN logic

In this chapter we show a problem of BAN logic [BAN89b, BAN89a]1 that has,
to our knowledge, not yet been identified, despite all research into formal pro-
tocol analysis. The problem is this: BAN logic is not ‘sound’. False statements
can be obtained by ‘valid’ inference rules from true assumptions. This behav-
ior is caused by a questionable inference rule. In Section 5.1 we will explain
the reasoning mistake behind this questionable inference rule. As a result of
the reasoning mistake, the inference rule does not have a computational justi-
fication, which is discussed in Section 5.2. Section 5.3 shows the protocol we
use in our unsoundness proof and Sect. 5.4 shows all inference rules used in
our proof. Section 5.5 shows the actual proof. In Sect. 5.6 we will give an al-
ternative proof, but in the questionable semantics of BAN logic; therefore, we
regard our proof of Sect. 5.5 more important. We close with some remarks on
the relevance of our results.

5.1 Cryptographic Hash Functions
and Justified Beliefs

A cryptographic hash function is a function H : {0, 1}∗ → {0, 1}k which is com-
putationally feasible to compute, but for which the inverse is computationally
infeasible. In particular, computing the inverse of a hash function takes O(2k)
operations. Thus, a cryptographic hash function is one-way: it is computation-
ally infeasible to construct a message x such that H(x) yields a given value
h [DH76]. For an extensive treatment of cryptographic hash functions, consult
Chapter 3.

1 If you are unfamiliar with BAN logic, you may wish to consult the previous chapter first.

55

56 Chapter 5. ‘Unsoundness’ of BAN logic

We repeat the most relevant properties of cryptographic hash functions
from Chapter 3 here. Cryptographic hash functions have a lot of applications,
including password protection, manipulation detection and the optimization
of digital signature schemes. Unfortunately however, the class of applications
is sometimes overestimated. Consider for example the following quote from
security expert Bruce Schneier [Sch96, page 31] (also quoted on page 43):

“If you want to verify someone has a particular file (that you also
have), but you don’t want him to send it to you, then you ask him
for the hash value. If he sends you the correct hash value, then it is
almost certain that he has that file.”

Unfortunately, this claim is false. The problem is that in the above situation
sketch, there is no mention that the hash value should be kept totally secret. If
there is somebody who is willing to publish the hash value of the file, anybody
can ‘prove’ possession of the file.

The authors of BAN logic [BAN89b, BAN89a] made the same reasoning
mistake as Bruce Schneier, and incorporated into their logic an inference rule
reflecting the abovementioned questionable reasoning2. The name of the ques-
tionable rule is H-BAN and the rule will be shown in Sect. 5.2 on page 58. As
a result of this, BAN logic is not ‘sound’. Essential in our proof is the fact that
belief in BAN logic is considered to be justified belief.

But first, let us recapitulate what soundness is. A proof procedure is sound
if it proves only valid formulae. In particular, from justified (‘true’) formulae
it should be impossible to infer an unjustifiable (‘false’) formula. A proof of
soundness generally involves a formal system and a class of models (a seman-
tics): a proof of soundness essentially shows that every formula that is derivable
(|−) in the formal system is observable (|=) in all relevant models (i.e., S |− X
implies s |= X).

A related concept, ‘soundness’3 (S |− P |≡ X implies S |− X) relies on the
definition of the modal operator belief (|≡) in BAN logic which denotes true
justified belief. As opposed to beliefs in general, which may be ungrounded and
false, a true justified belief should be true. To see what the authors of BAN
logic consider belief, let us look at the following excerpt from [BAN94, page 7]:

“More precisely, define knowledge as truth in all states (as in
[HM84]4); our notion of belief is a rudimentary approximation to
knowledge, and it is simple to see that if all initial beliefs are knowl-
edge then all final beliefs are knowledge and, in particular, they are
true.”

In this chapter, we will prove ‘unsoundness’ in Section 5.5 and unsound-
ness in Section 5.6. In our ‘unsoundness’ proof, all initial beliefs are clearly

2 See Appendix A.1 for a detailed discussion of the papers presenting BAN logic, and which
papers exactly contain the reasoning mistake.

3 Note the quotes, which distinguish ‘soundness’ from soundness.
4 This is a reference to a preliminary paper. The final paper is [HM90] — WT.

5.2. On the Computational Justification of Beliefs 57

knowledge, though one of the obtained final beliefs is not knowledge, in par-
ticular, it is false. Thus, by inferring an unjustified belief in BAN logic from true
assumptions, we prove that BAN logic is not sound. In particular, this means
that it is impossible to create a semantics in which BAN logic is sound.

5.2 On the Computational Justification of Beliefs

In the analysis of security protocols, if a principal obtains a new belief, there
has to be a computational justification for the newly obtained belief. For ex-
ample, if a principal sees a message cryptographically signed with private key
K−1, it is justified to believe that the message originates from the principal
owning private key K−1. The computational justification is in this case that it
is computationally infeasible for principals other than the one owning private
key K−1 to construct a message signed with this key. This type of justification
is essential if security is of concern.5

With this consideration in mind, it is worth noting the following excerpt
from page 266 of the BAN paper [BAN89b], (resp. pages 41–42 of [BAN89a]):

“Obviously, trust in protocols that use hash functions is not always
warranted. If H is an arbitrary function, nothing convinces one
that when A has uttered H(m) he must have also uttered m. In fact,
A may never have seen m. This may happen, for instance, if the
author of m gave H(m) to A, who signed it and sent it. This is simi-
lar to the way in which a manager signs a document presented by a
subordinate without reading the details of the document. However,
the manager expects anyone receiving this signed document to be-
have as though the manager had full knowledge of the contents.
Thus, provided the manager is not careless and the hash function
is suitable, signing a hash value should be considered the same as
signing the entire message.”

This quote contains an assumption which is, in our opinion, unreasonable:
The manager expects anyone receiving the signed document as though some-
thing would be the case which may not be the case. Of course, any principal in-
cluding the manager may be free to desire any behavior from other principals.
But is it reasonable to expect beliefs to be obtained which are not computation-
ally justified?

It is reasonable to assume that any principal, upon seeing {H(N)}K−1 will
believe the manager signed H(N), since it is computationally too difficult for
any principal other than the manager to construct the signature. However, it is
not reasonable to assume that any principal, upon believing a manager signed
H(N), believes that the manager has seen N , as there is no computational problem

5 Consider the alternative: we do not want principals to believe a message is sent by Santa Claus
just because the name ‘Santa Claus’ is written beneath it; writing the name ‘Santa Claus’ is an
exercise just as easy for Santa Claus himself as it is for anybody else.

58 Chapter 5. ‘Unsoundness’ of BAN logic

&%
'$

C &%
'$

A &%
'$

B
�

1 : N

-

2 : N

-

3 : H(N)

�
4 : {H(N)}K−1

FIGURE 5.1: The two parrots protocol, graphical illustration.

that would justify such a belief. Anybody may have computed H(N) from N ,
in particular someone may have told the manager H(N) but not N . Therefore,
the expectation of a manager that other principals should act as if the manager
knows N , is not warranted.

In fact, the text quoted above is the justification of the inference rule H-BAN
in BAN logic. We believe the identified problematic assumption explains the
problems that arise from the inference rule H-BAN.

The H-BAN hashing inference rule reads, as given on page 266 of [BAN89b]
(resp. page 42 of [BAN89a])6:

H-BAN
P |≡ Q |∼ H(X), P C X

P |≡ Q |∼ X

This rule is problematic, as it essentially infers belief (by P) of “possession”
(by Q) of the message X from P believing that Q once conveyed H(X). This
rule leads to the ‘unsoundness’ of BAN logic. Fortunately, none of the authen-
tication logics that descend from BAN logic, adopts the H-BAN inference rule.

Because the most commonly used signature schemes use cryptographic
hash functions, the H-BAN inference rule was added to BAN logic to facili-
tate the analysis of such signature schemes.

With this inference rule at hand, we can see how the two parrots protocol
demonstrates the ‘unsoundness’ of BAN logic.

5.3 The Two Parrots Protocol

To prove the ‘unsoundness’ of BAN logic, we rely on a protocol. The rather
simple two parrots protocol7, shown in shown in Figures 5.1 and 5.2, will demon-
strate the ‘unsoundness’. Alice (denoted A) chooses a random number N ,
sends it to Cecil (denoted C), who returns the number. Then Alice sends the
cryptographic hash of the number to Bob (denoted B), and Bob signs this hash
value and returns it to Alice. As Bob only sees the cryptographic hash value of
N , and a cryptographic hash function is one-way, Bob does not learn N itself.
Of course, Cecil might privately disclose N to Bob, but this does not happen

6 If one would like to add inference rule H-BAN to GNY, albeit just for demonstration purposes,
one could use exactly the same notation, as the formal languages of BAN logic and GNY logic
coincide for the constructs used in this particular inference rule.

7 The two parrots protocol is a variation on the signing parrot protocol, which was presented in Chap-
ter 4, Table 4.1.

5.3. The Two Parrots Protocol 59

in the two parrots protocol. Thus, though by private channels Bob might learn
N , the protocol certainly does not guarantee this.

Alice cannot, as a result of the protocol, conclude that Bob knows N . Nei-
ther can Alice conclude that Bob does not know N . However, according to the
analysis of the two parrots protocol in BAN logic, Alice will believe that Bob
knows N .

In the two parrots protocol, the message N is transmitted without protec-
tion. Thus, one can argue that Bob could learn N by mere eavesdropping. For
the sake of simplicity, we use a very simple protocol that suffices to demonstrate
our observation on BAN logic. Of course, protection of N can be achieved by
encryption of the messages between Alice and Cecil. Our proof can be easily
extended to obtain the same result for such an altered protocol. Moreover, our
proof does not rely on Bob eavesdropping.

Thus, though Bob could learn N through either an assistant (Cecil disclos-
ing N to Bob) or through eavesdropping, the communication in the two parrots
protocol simply does not warrant Bob knowing N , and therefore also does not
warrant Alice believing that Bob knows N .

When we want to formally analyze the protocol in BAN logic, we need to
transcribe it into BAN logic. A summary of the protocol transcription is given
in Figure 5.3. For illustrative purposes, we will also give the transcription into
GNY logic in Figure 5.4.8 First, we have the protocol assumptions which state
that A knows the public key K of B, A knows N , and A believes N to be fresh.
A newly generated random number is particularly fresh.

The protocol description itself is rather straightforward. To quickly see how
the two parrots protocol interacts with the H-BAN inference rule, observe that
message 2 (C → A : N) can be used to obtain the second precondition of
H-BAN, and that message 4 (B → A : {H(N)}K−1) can be used to obtain the
first precondition of H-BAN. Thus, messages 2 and 4 are the essential messages
of the protocol. The other messages can be considered mere ‘glue’.

What is achieved by a protocol can be stated in claims. For the two parrots
protocol, the following claim is true:

It will not be the case that B |≡ N

which essentially states that B will not know N . Note that this is true because

1. B only sees H(N),

2. the inverse of H(·) is hard to compute (H(·) is a one-way function), and

3. B has only polynomially many computational resources.

8 Note how idealization in BAN logic (Figure 5.3) differs from the idealization in GNY logic as
given in Figure 5.4. The assumptions A 3 +K (“A knows the public key +K”) and B 3 −K
(“B knows his own private key −K”) are omitted, as within BAN logic this is implied by

A |≡+K7→ B. In fact BAN logic does not even explicitly name public and private keys indi-
vidually. Therefore, the signed message in protocol step 2, has the form {H(N)}K−1 (BAN
logic) instead of {H(N)}−K (GNY logic). Moreover, as BAN does not distinguish between
possession (3) and belief (|≡), the assumptions and claims are rewritten accordingly. (A 3 N in
GNY logic is A |≡ N in BAN logic; A |≡ B 3 N in GNY logic is A |≡ B |≡ N in BAN logic.)

60 Chapter 5. ‘Unsoundness’ of BAN logic

assumptions Alice knows Bob’s public key, and Bob knows his own secret key.

the protocol itself Alice chooses a random number and sends it to Cecil. Cecil
sends this very same number back to Alice. Alice computes the (crypto-
graphic) hash value of this number and send the hash value to Bob. Bob
signs the hash value and sends it back to Alice.

claims Alice knows that knows Bob received her message containing the hash
value of the random number. Bob does not know the random num-
ber itself by means of the protocol, though Bob might learn it by other
means (e.g. Cecil tells Bob the number in private). Alice has no stance on
whether Bob knows the random number.

FIGURE 5.2: The two parrots protocol, plain description

assumptions A |≡K7→ B, A |≡ N, A |≡](N)

the protocol itself 1. A → C : N
2. C → A : N
3. A → B : H(N)
4. B → A : {H(N)}K−1

claims It will not be the case that B |≡ N .

problem A |≡ B |≡ N can be inferred.

FIGURE 5.3: BAN idealization of the two parrots protocol. In general, the mes-
sage X cryptographically signed with the private key corresponding to public
key K is denoted as {X}K−1 . Thus, any agent that knows K can verify the
signature and read X . The assumptions are the true premises that lead to the
false belief which is shown under ‘problem’.

assumptions A 3 +K, A |≡+K7→ B, B 3 −K, A 3 N, A |≡](N)

the protocol itself 1. S1 A → C : N
2. S2 C → A : N
3. S3 A → B : H(N)
4. S4 B → A : {H(N)}−K

claims A |≡ B 3 H(N) and it will not be the case that B 3 N .

remark If rule H-BAN would be added to GNY logic, A |≡ B 3 N would be
inferrable, which is undesirable.

FIGURE 5.4: GNY idealization of the two parrots protocol. To verify that, if
H-BAN is adopted, a legal annotation of this protocol exists where A |≡ B 3 N
is inferred, see that the protocol is highly similar to the signing parrot protocol
shown in Figure 4.2, and a legal annotation can be derived by adaptation of
Figure 4.4.

5.4. Used Inference Rules 61

The problem that we identify in BAN logic (see Sect. 5.5) has the effect that
due to inference rule H-BAN the following statement can also be inferred in
BAN logic:

A |≡ B |≡ N

which states that A will believe that B will know N . This belief of A is not
computationally justified (see Sect. 5.2).

5.4 Used Inference Rules

The proof of ‘unsoundness’ in Sect. 5.5 involves three inference rules of BAN
logic9. Inference rule H-BAN has already been given on page 58, the other two
rules are:

1. the message meaning inference rule number ii as given on page 238 of
[BAN89b] (resp. page 6 of [BAN89a])10:

MM P |≡K7→ Q, P C {X}K−1

P |≡ Q |∼ X

This rule formalizes that if P knows Q’s public key, and P receives a
message X signed with Q’s private key, P may infer that Q once sent
X .11

2. the nonce-verification inference rule as given on page 238 of [BAN89b]
(resp. page 6 of [BAN89a])12:

NV
P |≡](X), P |≡ Q |∼ X

P |≡ Q |≡ X

This rule formalizes that if P believes X to be fresh (it originates in the
current session), and P believes Q once conveyed X , then P may infer
that Q believes X (in the current session).13

5.5 Proof of ‘Unsoundness’ of BAN logic

In this section, we will present our formal proof. In our proof, we use the term
‘false belief’. This might be perceived as unnecessarily harsh or misleading, but

9 These names of these inference rules have been given by the writer of this text.
10 The GNY equivalent of this inference rule is I4.
11 Inference rule MM has been questioned by Wedel and Kessler, as it is invalid if interpreted

according to their semantics [WK96]. However, they point out that it is unclear whether BAN
logic itself or their semantics of BAN logic is to blame for that.

12 The GNY equivalent of this inference rule is I6.
13 This rule relies on the assumption that only beliefs are communicated.

62 Chapter 5. ‘Unsoundness’ of BAN logic

we will argue that this is the right formulation, even in lack of a clear semantics
of BAN logic as a whole. The central construct of BAN logic, |≡, is defined as
follows on page 236 of [BAN89b] (resp. page 4 of [BAN89a]):

“P |≡ X : P believes X , or P would be entitled to believe X . In par-
ticular, the principal P may act as though X is true. This construct
is central to the logic.”

In our proof, we obtain a result of the form P |≡ X , where X is not war-
ranted. It might be the case that X were true, if some more communication
were to occur than considered in our proof. Therefore, and in this way, we
deem “false belief” the appropriate term for such an X . With this explanation
given, let us formulate our main theorem:

Theorem 5.1 (‘Unsoundness’ of BAN logic). Within BAN logic (as defined in
[BAN89b, BAN89a]) it is possible to derive unjustifiable beliefs. More precisely, a
statement of the form A |≡ X can be derived while the statement X itself cannot be
derived.

Proof (derivability). Consider the two parrots protocol, whose BAN idealization
is given in Sect. 5.3. It is trivial to verify that A, C and B are capable of sending
the messages they ought to send in the two parrots protocol.

As a result of protocol step 2 (S2), the following statement is inserted:

A C N (5.1)

As a result of protocol step 4 (S4), the following statement is inserted:

A C {H(N)}K−1 (5.2)

Using inference rule MM, assumption A |≡K7→ B and (5.2), we can infer:

A |≡ B |∼ H(N) (5.3)

Using inference rule H-BAN, (5.3) and (5.1), we can infer:

A |≡ B |∼ N (5.4)

Using inference rule NV, assumption A |≡](N) and (5.4), we can infer:

A |≡ B |≡ N (5.5)

This inference is also depicted in Figure 5.5 as a heavy annotation of the protocol.
Statement (5.5) should definitely not be derivable from the two parrots proto-
col. With all protocol assumptions satisfied and only valid inferences applied,
an unjustifiable belief is established. More precisely, A believes B |≡ N , while
it also consistent to assume that B does not know N , and nobody tells B about
N . Therefore, A |≡ B |≡ N is unjustified.

5.6. The Semantic Approach 63

1 A |≡K7→ B (A → B : H(N))
2 A |≡ N 6 B C H(N) [3]
3 A |≡](N) (B → A : {H(N)}K−1)

(A → C : N) 7 A C {H(N)}K−1 [4]
4 C C N [1] 8 A |≡ B |∼ H(N) MM(1, 7)

(C → A : N) 9 A |≡ B |∼ N H-BAN(8, 5)
5 A C N [2] 10 A |≡ B |≡ N NV(3, 9)

FIGURE 5.5: Heavy BAN annotation of the two parrots protocol. This annota-
tion actually shows that BAN logic is not ‘sound’, because statement 10 should
not be derivable, as it is false.

The culprit is the inference rule H-BAN. This problem cannot be fixed by
adding inference rules in such a way that B |≡ N can be inferred, as this would
thwart the definition of a cryptographic hash function: then N would be deriv-
able from H(N). Such a ‘fix’ would increase the number of computationally
unjustified inference rules from (at least) one to two.

Note that one more inference step is needed after application of the H-BAN
rule before a false belief is established. This is because we need to obtain belief
of belief , which cannot be directly inferred from H-BAN.14

5.6 The Semantic Approach

In the original BAN papers [BAN89b, BAN89a], a rather limited semantics is
given for a part of the formal language of BAN logic. This semantics has been
subject to an enormous amount of criticism. For one thing, the semantics is
very closely tied to the formal language of BAN logic: what is derivable in the
logic is by definition observable in the semantics. Arguably, the semantics is so
closely tied to the formal language that it is of no additional value. Except for
it being the subject of criticism, the semantics has hardly ever been used.

In Sect. 5.5 we have explained why we used the formulation ‘false belief’ in
a proof that does not rely on any formal semantics. Therefore, we have consis-
tently used quotes around the term unsoundness. In this section we will provide
a proof based on a semantics: therefore, we may omit the quotes around un-
soundness. However, for this proof we need to disregard all criticisms of the
semantics of BAN logic. Therefore, we regard our proof in the previous section
as more important. But it is of course up to the reader to choose what he likes
best:

1. to agree with our use of ‘unjustified belief’ in the previous section, and
with it agree with the semantics-free proof of ‘unsoundness’ (shown in
the previous section), or

14 Note that in BAN logic, the semantics of belief (|≡) is defined, while the semantics of once said
(|∼) is still “largely a mystery” (literal quote from [BAN89b, BAN89a, BAN88]).

64 Chapter 5. ‘Unsoundness’ of BAN logic

2. to accept the semantics of BAN logic, regardless of all its shortcomings,
and with it agree to our proof of unsoundness (shown in this section).

Before we show a run of the two parrots protocol in the semantics of BAN
logic, it is appropriate to summarize this semantics:

• A local state of a principal P is a tuple (MP ,BP), where MP is the set
of messages seen (C) by P , and BP is the set of beliefs (|≡) of P . These
sets enjoy closure properties which correspond to the inference rules of
the logic. For compactness and ease of reading, we have only included
elements in these sets which are relevant for our purposes.

• A global state s is a tuple containing the local states of all principals. If s
is a global state, then sP is the local state of P in s and MP (s) and BP (s)
are the corresponding sets of seen messages and beliefs. In our case the
principals are A, B and C, and a global state s is the triple (sA, sB , sC).

• A run is a finite sequence of of global states s0, . . . , sn.

• A protocol run of a protocol of n steps of the form (Pi → Qi : Xi) is a run
of length n + 1, where s0 corresponds to the protocol assumptions and
where Xi 3 MQi

(si) for all i such that 0 < i ≤ n.

To be able to show a run of the two parrots protocol which is convenient
to read, we will first name and give all local states. Then, we will give the full
protocol run in which the names of these local states are used. For naming the
local states, we adhere to the following convention: sn,··· ,n′

P is the local state of
principal P in the global states n, · · · , n′.

The local states of principals A, B and C are as follows:

MA BA

s0,1
A = (∅, {K7→ B,N,](N)})

s2,3
A = ({N}, {K7→ B,N,](N)})

s4
A = ({N, {H(N)}K−1}, {K7→ B,N,](N),

B |∼ H(N), B |∼ N,B |≡ N})

MB BB

s0,1,2
B = (∅, ∅)

s3,4
B = ({H(N)} {H(N), {H(N)}K−1})

MC BC

s0
C = (∅, ∅)

s1,2,3,4
C = ({N} {N})

(5.6)

5.6. The Semantic Approach 65

The following is a run of the two parrots protocol:

s0, s1, s2, s3, s4 (5.7)

where si are the global states after the consecutive steps of the protocol:

sA sB sC

s0 = (s0,1
A s0,1,2

B s0
C)

s1 = (s0,1
A s0,1,2

B s1,2,3,4
C)

s2 = (s2,3
A s0,1,2

B s1,2,3,4
C)

s3 = (s2,3
A s3,4

B s1,2,3,4
C)

s4 = (s4
A s3,4

B s1,2,3,4
C)

(5.8)

Now that we have specified a protocol run of the two parrots protocol, we
can give our alternative proof of unsoundness:

Proof (observability). As shown in statement (5.5) of the derivability proof in Sec-
tion 5.5, we can derive in BAN logic the sentence A |≡ B |≡ N in every run
S1, S2, S3, S4 of the two parrots protocol. Thus, we have:

S1, S2, S3, S4 |−A |≡ B |≡ N (5.9)

Global state s4 corresponds to the semantics after a particular protocol run
S1, S2, S3, S4 of the two parrots protocol. When we take the model as given
in equations (5.6)–(5.8), we can observe that ‘A believes B knows N ’: B |≡ N ∈
BA(s4), which gives us:

s4 |= A |≡ B |≡ N (5.10)

On the other hand, we can also observe in our model that ‘B does not know
N ’: N /∈ BB(s4), which gives us:

s4 6|= B |≡ N (5.11)

Thus, the belief of A as given in (5.10) is not true in a particular protocol run as
shown in (5.11). The false belief of A as given in (5.10), is nevertheless derivable
(5.9) in every protocol run. Thus, it is possible to derive a false belief within
BAN logic.

Let us quote one last excerpt from Section 13, on page 269 of [BAN89b]
(resp. pages 47–48 of [BAN89a]):

“Clearly, some beliefs are false. This seems essential to a satisfac-
tory semantics. [. . .] Most beliefs happen to be true in practice, but
the semantics does not account for this coincidence. To guarantee
that all beliefs are true we would need to guarantee that all initial
beliefs are true.”

The existence of false beliefs in the semantics as such is not a problem, the
problem is that some false beliefs are derivable from true ones.

66 Chapter 5. ‘Unsoundness’ of BAN logic

5.7 Conclusion

The formal approach to protocol analysis essentially started with BAN logic.
Many critiques of BAN logic have appeared, mentioning its incompleteness
(i.e., inability to detect some obvious problems, cf. [Nes90]) and its poor se-
mantics (among many others, see [AT91]). Nevertheless, these critiques have
not been a reason to abandon the way of thinking introduced by BAN logic
[HPvdM03]. The many augmentations to BAN logic (most notably, AT [AT91],
GNY [GNY90], AUTLOG [KW94, WK96], VO [vO93], SVO [SvO94, SvO96] and
SVD [Dek00]) show the trust in the formal approach which originates from
BAN logic. In our opinion, this consensual trust in the way of thinking intro-
duced by BAN logic is justified. While obtaining completeness has long been
regarded as impossible, the soundness of BAN logic itself has never been seri-
ously doubted. Wedel and Kessler identified rules in BAN, AT and GNY which
are invalid in their semantics, but they point out that it is unclear whether the
inference rules or their semantics are to blame for that [WK96]. Various more
recent results [AR02, CD05a, CD05b, Syv00] provide directions on how com-
pleteness could be obtained for formal protocol analysis.

Our unsoundness result does not at all invalidate the formal approach to
protocol analysis. It should merely count as a warning to those who wish to
complete their logic. All augmentations of BAN logic are incomplete in the
sense that they do not accommodate all cryptographic primitives known to
date. These logics are essentially ‘just big enough’ to capture the problems
the authors intend to capture. And to be fair, this has been difficult enough
already. Just a few BAN-descendant logics accommodate cryptographic hash
functions, none of them accommodate fancy primitives like (to name just an
example) oblivious transfer.

The fact that none of the hash-accommodating BAN-descendant logics a-
dopts the H-BAN inference rule, can probably be explained by the observation
that constructing a good logic is already so difficult that none of the authors
will have felt the urge to include an inference rule into their logic that was not
needed to capture the problem the author intended to capture. Nevertheless,
it is remarkable that we are apparently the first to find this result on a paper
which has been so extensively studied and is 17 years old.

So far, we know of only one publication which relies on the faulty H-BAN
inference rule [AvdHdV01]. In this publication, the SET protocol15 is analyzed
in BAN logic. It remains open whether the authors’ assessment of SET holds
in a BAN logic with the inference rule H-BAN omitted.

15 SET stands for Secure Electronic Transactions [MV97a, MV97b, MV97c]. The protocol was intro-
duced by VISA and Mastercard for online payments, but it has never been widely adopted or
deployed.

Chapter 6

GNY logic is not good enough yet. We analyze
some general problems of authentication logics.

We introduce completeness assumptions, add an
inference rule, enhance the protocol parser and

introduce maximum belief sets.

Extending GNY Logic

GNY logic is not powerful enough to analyze the protocols we want to analyze
in Chapter 9 of this thesis. Therefore, we will extend GNY logic. Before ex-
tending GNY logic, we need to address a few caveats of authentication logics
in general.

6.1 Why Authentication Logics Are So Tricky

Arguably the most difficult part of constructing an authentication logic is craft-
ing the list of inference rules. The inference rules should precisely express ‘all
relevant’ properties of cryptographic primitives such as cryptographic hash
functions, symmetric encryption and asymmetric encryption. The list of in-
ference rules often has omissions, and individual inference rules can have un-
stated assumptions, and sometimes even downright fatal flaws. The previous
chapter (Chapter 5) elaborated on such a flaw, found in BAN logic. Unstated
assumptions and omitted inference rules are sometimes two sides of the same
coin, but not necessarily so. An unstated assumption may still be a legitimate
assumption. An erroneously omitted inference rule is a Bad Thing: it means
that the logic does not detect a flaw which could have been detected if the rule
were not omitted.

6.1.1 Unstated Assumptions:
Length-Concealment and Non-Incrementality

We will give two examples of unstated assumptions with regard to inference
rules. We sketch the problem and offer directions of how to solve the problems
that result from the unstated assumptions.

67

68 Chapter 6. Extending GNY Logic

The first example has to do with the constructs used to formalize encrypted
messages. Consider the following situation in a fictive university department:

In the department, all communication is done by placing sealed en-
velopes on the table in the coffee corner. On these envelopes the
names of the sender and the intended recipient are written, and
everybody obeys the rule to only open an envelope if he are the
intended recipient. Now everybody in the department knows that
Alice is writing her long-awaited PhD thesis, which presumably
contains shocking results. Everybody is dying to know whether
Alice has submitted her manuscript to her supervisor, Bob. As long
as the only envelopes from Alice to Bob on the table in the coffee
corner are a few thin, flimsy ones, everybody will be sure that Alice
has not yet submitted her manuscript. This will however change as
soon as a one-inch thick envelope from Alice to Bob appears on the
table.

Now, reread the description, but read ‘encrypted message’ where it says
‘sealed envelope’. Obviously, if one does not have the right decryption key to
an encrypted message, one cannot infer the contents of the message (i.e., look
inside the envelope). However, in general it is possible to infer the length of
an encrypted message from the encrypted message without knowing the de-
cryption key (i.e., one can look at the size and measure the weight of a sealed
envelope). In fact, length-concealing encryption schemes are a rarity indeed.
Within almost every authentication logic however, a length-concealing encryp-
tion scheme is assumed. We have not found any paper presenting an authen-
tication logic in which this assumption is explicitly stated. There is only one
way to infer that this assumption is actually made: there is no inference rule of
roughly the following form1:

P-LEN
P C {X}K ,
length(X, l)

P C length(X, l)

If a principal is told an encryption {X}K of for-
mula X , and the formula X has length l, then he
is considered to have also been told the length l
of the formula X .

Length-concealing encryption schemes are, from an information theory per-
spective, strictly stronger than length-revealing encryption schemes. There-
fore, if one analyzes a protocol in an authentication logic, and models a length-
revealing encryption scheme as length-concealing, one makes an unjustified
assumption. Care should be taken that such an unjustified assumption does
not invalidate the correctness proof that is obtained from the authentication
logic. An example of a protocol that can be wrongly proven secure using such
an assumption is derivable from the university situation described above.

1 This inference rule follows the notation of GNY logic, see Appendix B. Likewise, the recogniz-
ability (φ(·)) concept in GNY logic could be extended to facilitate recognition of the length of
formulae.

6.1. Why Authentication Logics Are So Tricky 69

For our second example on unstated assumptions, we return again to cryp-
tographic hash functions (cf. Chapter 3). Inference rule P4 of GNY logic2 states
that whoever possesses X , can obtain in a computationally feasible way H(X).
There is no inference rule of the following form:

H-INC
P 3 H(X, Y),

P 3 (Y, Z)
P 3 H(X, Z)

If a principal possesses the hash value of the
concatenation of X and Y , and possesses Y and
Z, then he is capable of possessing the hash
value of the concatenation of X and Z.

Note that in H-INC, P may be ignorant of the actual contents of X .
If the cryptographic hash function denoted by H(·) is incremental as de-

scribed in Section 3.6, an inference rule like H-INC should be added to the
logic. Otherwise, the logic would systematically underestimate the inference
capabilities of the principals, which is undesirable. In fact, if this inference rule
would be added, the protocols described in Chapters 9 and 10 of this thesis
would be rendered worthless. In Chapters 9 and 10, we assume that the used
cryptographic hash function is indeed non-incremental.

Thus, one has to be careful and be explicit about whether a hash function,
modeled in an authentication logic, is considered to be incremental. It should
be noted that the authors of most authentication logics are not to blame for this
omitted assumption, as the concept of incremental cryptographic hash func-
tions has emerged years after most authentication logics were conceived.

6.1.2 Omitted Inference Rules: The Key to Incompleteness

It goes almost without saying that it is extremely difficult to create an authen-
tication logic from scratch that captures all possible cryptographic primitives
that might be used in a security protocol. To take an example: oblivious trans-
fer is not facilitated by any known authentication logic to date. While it is wise
to start small and keep authentication logics as simple as possible, incomplete
coverage of cryptographic primitives can have implications for the results ob-
tained by application of an authentication logic. The coverage of cryptographic
primitives by an authentication logic is determined by two aspects:

1. The formal language
It must be possible to denote in the formal language of the logic that a
certain cryptographic primitive has been applied to some message.

2. The inference rules
The ‘essence’ of a cryptographic primitive lies in what knowledge or pos-
sessions are required to perform specific operations. To correctly reflect a
primitive, the inference rules should precisely reflect what can and what
can not be done with the use of a certain primitive.

2 See Appendix B, page 185.

70 Chapter 6. Extending GNY Logic

Thus, incomplete coverage of primitives may be due to two types of omis-
sions. Either the the formal language is too restricted, or the list of inference
rules does not correctly reflect the workings of the primitives facilitated in the
language. The former type omission is not a large problem: if a primitive is
omitted in the language, a protocol using the primitive cannot be modeled us-
ing the authentication logic, and therefore cannot be falsely ‘proven correct’.
The latter type of omission poses a serious problem. In fact, it is this type
of omission that is partially to blame for the incompleteness of authentication
logics.

Omitted inference rules are no rarities in the field of authentication logics.
In fact, it is common to add inference rules when needed to prove a protocol
correct, and to ignore the inference rules not needed in the particular protocol
proof.

To illustrate how an omitted inference rule makes an authentication logic
incomplete, consider the following type of protocol. Let us assume we have
some protocol which uses asymmetric encryption, but requires the public keys
to be kept secret within a certain group of principals. (Actually, we do not
know whether such a protocol exists in practice, but there is no reason to render
such a protocol unviable.) Within this protocol, at a certain moment, a message
{X}−K is sent. This is the message X , cryptographically signed with private
key −K. The message X should remain secret within the group of principals
knowing the public key +K.

Does this protocol have a major problem? In fact, it does! If the signature
scheme is like almost any signature scheme used in common practice, it is pos-
sible to derive X from {X}−K without knowing or possessing the public key
+K.3 Thus, for the essentials of such a signature scheme to be reflected prop-
erly, an inference rule of the following form is required:4

T6′
P C {X}−K

P C X

If a principal is told a formula encrypted with
a private key (i.e., a signed formula) then he is
considered to have also been told the contents
of that formula.

Without an inference rule like T6′, an authentication logic fails to find the
huge gap in the above-mentioned protocol. If the protocol description were to
be adjusted such that it explicitly states that a signature scheme is used that
does not leak the message, this should be reflected in an assumption about the
inference rules. The assumption should be something like this:

There is no set of inference rules which allows a principal to derive
X from {X}−K .

This assumption is essentially a completeness assumption: it states that the
list of inference rules is complete with respect to some essential property of a
specific cryptographic primitive. In Chapter 9 we will use completeness as-
sumptions to prove certain principals cannot infer specific information.

3 This means that is is possible to read a message even if one does not recognize the signature.
4 This rule T6′ is of course a strengthened version of rule T6.

6.2. Proofs of Knowledge and Ignorance 71

6.2 Proofs of Knowledge and Ignorance

Proving that security protocols meet their specification generally involves
proving three properties of a protocol:

1. the participating principals learn what they should learn,

2. what the participating principals learn is indeed true, and

3. no principal learns facts he ought not to know.

Observe that properties 1 and 2 address mainly liveness, and that property
3 addresses safety.

Thus, a correctness proof requires both a proof of things that are learned,
and things that are not learned in course of a protocol run. Authentication
logics generally focus on the learning part, and less if at all on the not-learning
part. If an analysis of a protocol using an authentication logic does not expose
a flaw, this means that properties 1 and 2 are not violated, of course assuming
that the logic itself is ‘correct’.

If one wants to prove property 3, that principals can not infer specific facts,
one has to model the limitations of the inference capabilities of the agents, and
show that the limitations effectively obstruct principals from inferring certain
relevant facts (Cf. [ABV01]). To model the inference limitations of principals,
we need to model what inference rules are available to an agent. This is where
a nasty property of the authentication logics comes in: none of the authors of
these logics claim that the list of inference rules provided in the logic is indeed
complete in the sense that no more inference rules can be added. We have to
make completeness assumptions (as in Section 6.1.2) to be able to prove prop-
erty 3 of a protocol. We do not believe nor claim that completeness assumptions
are sufficient for proving property 3 of a protocol. This issue will be discussed
in Section 6.2.2.5

Typically, the (in)ability to draw specific conclusions plays a crucial role in
a security protocol: for example showing a message which can only be con-
structed with knowledge of the specific conclusion constitutes a proof of iden-
tity. This is best illustrated with cryptographic signatures. If some principal V
sees {X}−K , and knows−K is the private key of P , then V may believe P once
conveyed X . Why is this the case? Essentially, because no principal but P pos-
sesses−K. This begs the question: is there anything in the authentication logic
which prevents a malicious principal to create {X}−K out of thin air? The an-
swer is simple: no, there is nothing which prevents a principal to do this within
the authentication logic. Of course, in an actual ‘real world’ protocol run, it is
impossible to do this. So, the obstruction that one cannot construct messages
which are computationally hard to construct, should be incorporated into the
logic.6

5 Thus, completeness assumptions are necessary, but not necessarily sufficient.
6 Though this type of reasoning is not new in the domain of authentication logics, it has never

been incorporated into an authentication logic.

72 Chapter 6. Extending GNY Logic

While lacking a means to prove property 3, the meaning of a correctness
proof in an authentication logic is only limited. If it exposes a flaw in a proto-
col, the protocol will indeed be flawed. However, not finding any errors does
not guarantee that the protocol is correct. Therefore, proving a protocol cor-
rect using an authentication logic, only proves that the protocol has passed a
first test of some not-so-obvious flaws. However, we deem such a proof an
important step in defending correctness of protocols.

In the light of these considerations, we need to extend the authentication
logic we use (GNY) in such a way that

• what should be learned can in fact be learned7, and

• what should not be learned, can be proven not to be learned.

What can and cannot be learned should have causal effects in protocol runs.
We extend GNY logic in this way in the next two sections.

6.2.1 New Inference Rules for Proving Possession

In Chapters 8–10, we will present new methods for proving possession of infor-
mation based on cryptographic hash functions. In order to prove these meth-
ods correct, we have to model some properties of cryptographic hash functions
which have not yet been modeled in any authentication logic. This modeling
is done by adding the appropriate inference rule H2 to GNY logic.

The reasoning behind the added inference rule takes as its starting point
another inference rule (I4) which reflects a way in which possession can be
proven. Slowly we will manipulate this rule until we arrive at H2. Note that
we do not depart from an inference rule like H-BAN, because that rule is faulty
(see Chapter 5).

Since we are discussing inference rules which can be applied in protocols
in which one principal (the prover) proves something to another principal (the
verifier), we will use in the presented inference rules the names P and V to
denote the prover and the verifier (as opposed to using the names P and Q for
two arbitrary principals). Moreover, any malicious principal in our discussion
will be denoted with the name C (for Charlie). Messages are denoted X .

A well known method for proving possession of a certain message is to sign
the message one wants to prove possession of, and then to show this signed
message.8 Obviously this method cannot be used in a setting where the mes-
sage itself should be kept secret, because the message will be disclosed when
showing the signed message. Nevertheless it is interesting to look at the infer-
ence rule that captures the interpretation of signed messages, I4, repeated be-
low (from [GNY90]; note that the names of the principals have been changed,
therefore we name the rule I4′).

7 Of course, without making unjustifiable assumptions.
8 The signature is required because the communication channel does not reliably ‘say’ who has

sent a particular message. This is a result of using the malicious adversary model.

6.2. Proofs of Knowledge and Ignorance 73

I4′ V C {X}−K , V 3 +K, V |≡+K7→ P, V |≡ φ(X)
V |≡ P |∼ X, V |≡ P |∼ {X}−K

What the rule says is this: If V sees a signed message {X}−K , knows the public
key +K, knows the corresponding private key −K belongs to P , and recog-
nizes X to be a message, then V is entitled to believe that P once conveyed the
signed message {X}−K , and thus also once conveyed the message X itself.

Important to note are two silent assumptions of this inference rule:

1. For any X , no principal C will convey {X}−K where C 6= P . Thus, P ’s
private key −K is only known to P and P will never convey −K.9

2. P will, in a sense, be conservative in what he signs: P will only sign
intentionally and with consent.10 P will never sign unseen messages.

The reason for the second assumption is that a digital signature is non-
repudiatable.11. Making similar assumptions, we could introduce a new iden-
tity-related inference rule:

H1
V C ∗H(X, P), V 3 (X, P)

V |≡ P |∼ (X, P), V |≡ P |∼ H(X, P)

If V sees a message H(X, P), which V did not send himself previously, and also
possesses (X, P), then V is entitled to believe that P once conveyed (X, P) and
H(X, P).

The assumptions under which this rule is justified are these:

1. For any X , no principal C will convey H(X, P) where C 6= P .

2. P will, in a sense, be conservative in the set of X’s for which he (P) con-
veys H(X, P). More specifically, P will only convey H(X, P) for X’s of
which he (P) wants to show other principals he possesses X .

These two assumptions tie together just like the two assumptions of rule
I4′: the first assumption states that only one principal is capable of sending
certain messages, and the second states that this principal will only do so with
informed consent.12

However, the first assumption of inference rule H1 is not justifiable. Re-
lying on rule H1, a malicious principal C, knowing P and any secret X , can

9 More precisely, we mean that no C will send {X}−K before receiving {X}−K : Thus, C could
perform replays of messages, but cannot generate messages signed with the key −K.

10 For example, P will not sign his own death penalty.
11 It is however important to distinguish the different intentions a signature may convey. A signa-

ture may convey, for example, a confirmation of a contract, or a receipt, or something completely
different. The signer should always assure that he consents the intention which he conveys with
his signature. In particular, a principal may sign an unseen message in a challenge-response
protocol as long as the context guarantees that the signature only conveys a receipt. This can
be assured by using a particular keyset for such signatures, or by including the intention in the
signed message itself.

12 Since I4′ is just a syntactic variation of I4, it of course also applies to I4.

74 Chapter 6. Extending GNY Logic

‘commit’ P to conveying the secret X by broadcasting H(X, P). Assumption 1
of inference rule I4′ does not suffer from such a problem: to construct {X}−K ,
one has to possess −K.

To prevent malicious principals from creating havoc by sending H(X, P),
we should require the message sent to be authenticated, i.e., that it is known
that P sent the message H(X, P). Using sender identification, a verifier can
distinguish proofs of possession by malicious principals from proofs by in-
tended principals. When we incorporate sender identification, we can intro-
duce a more moderate rule like this one:

H2
V |≡ P |∼ ∗H(X, P), V 3 (X, P)

V |≡ P |∼ (X, P)

If V believes P once conveyed the the message H(X, P), which V did not send
himself previously, and if V also possesses (X, P), then V is entitled to believe
that P once conveyed (X, P). This effectively eliminates the first assumption
of rule H1.

Rule H2 is justified under the following assumptions:

1. For any X , no principal C will convey H(X, P) where C 6= P .

2. P will, in a sense, be conservative in the set of X’s for which he conveys
H(X, P) in an authenticated manner (that is, such that P can be identified
as the sender). More specifically, P will only convey H(X, P) for X’s of
which he wants to show other principals that he possesses X .

Though these assumptions are not very different from the assumptions of
rule H1, the working of rule H2 is quite different. Firstly, a malicious princi-
pal C, knowing both X and P , cannot ‘commit’ P to conveying the secret X
by broadcasting H(X, P). Moreover, if a malicious principal would broadcast
H(X, P), and if P would receive it, sign it, and broadcast the signed message,
this would still not result in anyone being convinced that P actually possesses
X . Some may be convinced that P conveyed X , but conveying a message does
not imply possessing a message!

For any principal V to believe that P possesses X , based on rule H2, X
should be fresh. More precisely, X should contain a term that V believes to be
fresh, and then V could apply rule I6. Typically, V should construct a fresh
term F , and this term should be combined with X , yielding X ′ = (X, F) and
then H(X ′, P) should be computed. If P possesses X and receives F , then P
can construct a convincing proof of possession.

However, if P has an assistant C who possesses X , P might forward F to
C, and C might compute H(X ′, P) and send this term to P . In turn, P could
sign this term and send it on to V , who will be convinced. Is this a problem?
Well, both yes and no. Yes, because strictly spoken it does not guarantee that
P actually possesses X . No, because it does guarantee that either P possesses
X or P has a rather cooperative assistant who does possess X and is willing
to perform computations on X on behalf of P . Assumption 1 above essentially
rules out that such an assistant exists.

6.2. Proofs of Knowledge and Ignorance 75

There is a slight technical issue with rule H2, which also applies to rule H1:
How can a principal P make sure that he is not sending some message M in
an authenticated manner (that is, such that P can be identified as the sender)
without actually knowing that he is sending H(X, P)? For example, P might
be required to sign a challenge M . P cannot verify whether this challenge M in
fact is equal to an H(X, P) if he does not possess X . This problem can be solved
by adding something like a publicly known and recognizable speech act token to
the hash value that has to be signed: P would have to sign (“I know”,H(X, P))
instead of just H(X, P). The speech act token can always be recognized by P ,
and therefore P can prevent erroneously signing hash values. The inference
rule needs to be adjusted to reflect this, giving rule H3 shown below. In such
a way, P can make sure that he never accidentally signs a value that may be
interpreted using inference rule H3.

H3
V |≡ P |∼ (“I know”, ∗H(X, P)), V 3 (X, P)

V |≡ P |∼ (X, P)

This rule has the same assumption as H2, except that for H3, P can really make
sure the assumption is true, because P always knows it when he sends a signed
message may be used using inference rule H3. This rule requires that the lan-
guage of the GNY logic be extended with tokens. We decide not to do this (yet),
and use rule H2, knowing that we can trivially modify protocols and proofs to
reflect rule H3 instead of rule H2.

6.2.2 Proving That Principals Do Not Learn Too Much

Authentication logics focus on establishing whether the principals interacting
in a security protocol draw correct conclusions. However, for security proto-
cols, it is also crucial to prove that certain principals cannot draw some specific
conclusions. In this section, we will enhance GNY logic to extend its reasoning
capabilities about not learning. First, we make sure that not learning has causal
effects on protocol analysis, and secondly we enhance the logic to allow us to
precisely state in what circumstances it can be guaranteed that certain facts are
not learned.

Our proposal for incorporation is simple and effective. The protocol parser
which translates an idealized protocol into a number of step transitions (see
Section 4.3), should require that the sending party actually possesses (3) the
message it is supposed to send, before sending the message.13 Thus, any step
transition is of the following form:14

[Y, P 3 X] (P → Q : X) [Y, P 3 X, Q C X]

whereas in the original GNY logic, the step transition has only this form:

[Y] (P → Q : X) [Y, Q C X]
13 This way of reasoning has also been used in our earlier work [TvdRO03].
14 For simplicity, we omit the ∗ (not-originated-here) sign which the GNY protocol parser in some

cases adds to the postcondition [GNY90, Section 5]. The not-originated-here sign is implicated.

76 Chapter 6. Extending GNY Logic

The effectiveness of this modified protocol parser lies in the fact that the
protocol parser introduces a precondition that should be derivable from earlier
statements. If it is impossible to derive the precondition P 3 X , then it is
impossible to perform the protocol step P → Q : X , and it is impossible to
create a legal annotation of a protocol.

To incorporate this precondition into our notion of a heavy annotation (see
Section 4.3), we require in a heavy annotation that every assertion of the form
‘is told (C)’ which is added after a protocol step is not only annotated with the
step number, but also with the assertion number which shows that the sender
actually possessed the message before sending it.15

This modified protocol parser and annotation requirements make sure that,
just as in the ‘real world’, there is a causal connection from not knowing X to
not being able to send X .16

Now that we have made sure that the inability to draw certain conclusions
has causal effects on the protocol analysis, let us focus on the inability to draw
certain conclusions. This should be proven for both active and passive attacks.
An active attack is an attack in which a malicious principal manipulates the
messages exchanged in a protocol in such a way that the honest participating
principals learn other things than intended by the protocol. A passive attack is
an attack in which the attacker learns something he should not learn, while
the only capabilities available to the attacker are eavesdropping and inference,
and notably not message interception and modification, as in the malicious
adversary model (Dolev-Yao threat model). The literature about authentica-
tion logics generally addresses the case of active attacks (like in the Needham-
Schroeder Public-Key protocol (NSPK) [Low96]), but not the case of passive
attacks.

We demonstrate an approach to proving that principals cannot learn spe-
cific facts in the course of a protocol run. We believe that this is a significant
contribution to establishing for concrete protocols a proof of property 3 as men-
tioned in Section 6.2, page 71.

Normally, when proving a protocol using an authentication logic, assump-
tions about the participating principals are stated. We introduce an extra prin-
cipal and show that this principal cannot infer what should be kept secret. This
new principal E is Eve the evil eavesdropper. We make no assumptions on
what role Eve takes in the protocol: Eve may either be one of the participants
or an external observer. Just as with any other principal, we list assumptions
about what Eve possesses and believes at the beginning of the protocol. The
meaning of the assumptions is somewhat different, however. When we state

15 If we return to the heavy annotation of the example of the signing parrot protocol, shown in
Figure 4.4 on page 53, line 6 should carry as justification ‘[1](4)’ instead of just ‘[1]’. Line 7
cannot be justified right away, but from line 6, using inference rules P1 and P8, B 3 {N}−K

can be inferred. The line on which AC∗{N}−K is inserted, should carry as justification ‘[2](x)’,
where x is the line number on which B 3 {N}−K is inferred.

16 Note that this modified protocol parser does not rule out attacks in which forwarding of mes-
sages plays a role: to forward a message, the intruder still has to observe the message.

6.3. Conclusion 77

an assumption for a ‘normal’ principal participating in the protocol, this is in
some sense a weakness of the protocol: it has to be met in order for the proto-
col to be correct. When we state an assumption about Eve, this is a strength of
the protocol: even if Eve knows or possesses this a priori, the protocol is still
correct in the sense that Eve cannot infer the secret. Thus, we establish the max-
imum amount of a priori beliefs and possessions Eve may have under which
it is still impossible for Eve to infer the secret facts, a maximum belief set.17 Just
as with ‘normal’ authentication logic proofs, the list of assumptions allows to
reason about subtleties concerning the quality and applicability of a protocol.

To sum up, we model two properties of a passive attacker, namely

1. its beliefs and possessions (by means of a maximum belief set), and

2. its inference capabilities (by means of completeness assumptions, see Sec-
tion 6.1.2).

Using these beliefs, possessions and inference capabilities, we can compute
what a passive attacker can learn from observing a protocol run. The things
that should be kept secret should not be learnable for the passive attacker.

6.3 Conclusion

Authentication logics are powerful instruments that should be created and
handled with care. Two types of mistakes that are easily made are (1) mak-
ing implicit (unstated) assumptions, and (2) omitting inference rules. When all
inference rules modeling a particular cryptographic primitive are added to an
authentication logic, one can guarantee a limited kind of completeness of an
authentication logic.

The important elements of our extension to GNY logic are the following:

Heavy annotations which make sure verification of a protocol analysis is
structured and simple. The general structure of heavy protocol anno-
tations that has been explained in Section 4.3 (page 53) is extended in
Section 6.2.2 (page 76).

Completeness assumptions which allows one to state that an authentication
logic models all essential properties of a cryptographic primitive. Com-
pleteness assumptions are introduced in Section 6.1.2 (page 70).

Inference rule H2 which captures an important property of cryptographic
hash functions that had not yet been incorporated into any authentication
logic. This inference rule is explained and introduced in Section 6.2.1.

A modified protocol parser which requires principals to possess a message
before they can send it. This is needed for proving that not learning spe-
cific facts has causal effects on protocol evolution. This modified protocol
parser is introduced in Section 6.2.2.

17 This maximum belief set is not necessarily unique.

78 Chapter 6. Extending GNY Logic

Maximum belief sets which allow one to reason about passive attackers and
what they can and cannot learn in the course of a protocol run, depending
on their a priori knowledge and possessions. Maximum belief sets are
explained in Section 6.2.2.

Later on in this thesis, in Chapter 9, we will use our extended version of
GNY logic to analyze our protocols.

Part III

Approaches

79

Chapter 7

Linking information which stems from various
sources, also called information integration, is

difficult. Also, enforcing that linked information
is kept secret seems impossible. We present the

information designator, which is an information
pseudonym, a concept that helps to solve both

problems simultaneously.

Information Designators

The discussion about the state of the art in computer security in general, and
privacy protection in particular, divides the participants into optimists and
pessimists. Consider for example the following question:

Is security of exchanged information a solved problem?

If one looks at this question from the cryptography perspective, the answer
tends to the positive. It is possible to store or communicate information in such
a way that only the intended recipients can interpret the information. The cryp-
tographers (those who design cryptographic schemes) are currently way ahead
of the cryptoanalysts (those who try to break cryptographic schemes).

On the other hand, if one looks at the question from a civil liberties per-
spective, the answer would definitely tend to the negative. In practice, cryp-
tographic techniques are only reluctantly applied to protect the privacy of in-
dividual citizens. Information about individuals from various sources is com-
bined for commercial and ‘homeland security’ purposes, which are not always
in the interest of the individual.1

The extent to which the privacy of individual citizens should be protected
is a normative, if not political question, but to what extent it can be protected
is a scientific question. This latter question will be the focus of this chapter.
The trivial answer is that privacy can be protected by making sure that no in-
formation about individuals is communicated at all. Arguably, in the current
society we have become so dependent on the automated processing of infor-
mation that we cannot afford such a solution. Thus, the better question would
be:

1 The American Civil Liberties Union has a clear image of one of its worst nightmares, which can
be found on http://www.aclu.org/pizza/. In a somewhat exaggerated movie, they tell
a story of someone ordering a pizza on the phone, with the person handling the call looking
through the client’s medical and library files.

81

http://www.aclu.org/pizza/

82 Chapter 7. Information Designators

Can privacy of citizens be protected without prohibiting the auto-
mated information processing we depend on?

In this chapter, we will demonstrate that it is possible to facilitate intricate,
distributed information processing while at the same time protecting the pri-
vacy of the individuals involved. Thus, the commonly held belief that privacy
and information availability are not on good terms, is not as rigid as it seems.

We cannot achieve secure information exchange by mere application of
some cryptography. Cryptographic techniques often cannot be easily applied,
therefore the privacy protection is mediocre in many information systems.

In ‘traditional’ cryptography, there is a very clear distinction between the
good guys and the bad guys. The former can be fully trusted, the latter not at
all. If discussing the exchange of privacy-sensitive information, it is fair to say
that not every organization processing such privacy-sensitive information is
intrinsically good. In fact, if Alice is afraid Bob might misuse the information,
Bob does not belong to the good guys nor to the bad guys. Probably Bob be-
longs to the so-so guys: those not intrinsically bad, but not to be trusted more
than strictly necessary. Cryptography assumes a clear distinction between the
trusted and the untrusted, and therefore more than just cryptography is needed
if privacy needs to be protected in a context where so-so guys exist. With this
knowledge, we can answer the opening question of this chapter as follows:

If we accept there are parties who are not unconditionally trusted,
but at the same time need to process sensitive information, the se-
curity of this information is not a solved problem (yet).

It would be ludicrous to assume that if privacy were of no concern, all infor-
mation from various sources could easily be combined. Solving problems sur-
rounding information integration properly is already so difficult [RB01, DH05,
GK05], that it is no real surprise that issues such as privacy and anonymity are
often no substantial part of the initial integration design, if they are included
at all.

We believe however, that both information dissemination control and prop-
er information integration can actually be achieved by one and the same instru-
ment. In this chapter, we will present our solution, the information designator.
This solution is by no means a ‘one size fits all’-solution, nor is it easy to imple-
ment given the legacy of information systems. On the other hand, our solution
is in the end rather elegant and effective, and we would like to present it as a
proof of concept.

In Section 7.1, we will introduce the research field of information integra-
tion, and how its problems relate to ontologies and dissemination of infor-
mation. Section 7.2 will present our new approach to these challenges, and
the central concept of this approach: the information designator. Phenomena
mentioned in Section 7.2 will be illustrated in Section 7.3, where we show an
example of how both information integration and dissemination control are
solved jointly. Section 7.4 will show how cryptography can be used to estab-
lish desirable properties of information designators. In Section 7.5 we discuss

7.1. Information Integration and its Challenges 83

student course grade
John Doe expert systems A
Joe Average statistics C
Jim Doolittle statistics E
.

name birth date
J. Average 7/6/1946
J. Doe 3/31/1948
N. Chimpsky 11/21/1973
.

TABLE 7.1: Two relational tables which can be combined to relate courses to
birth dates.

the relevance of our approach and relate it to other research. And of course, we
end with some conclusions.

7.1 Information Integration and its Challenges

In this section, we present our analysis of the fundamental challenges that must
be faced when integrating information. These problems stem from the fact
that some information may be modeled multiple times, but differently (Sec-
tion 7.1.1), and from the fact that information, once disseminated from its orig-
inal source, is hard to control (Section 7.1.2).

Information integration is done when a group of organizations decides to
pool their information. Typically this is a tedious task in which unrelated, indi-
vidual (relational) databases have to be combined in such a way that the data-
bases jointly act as if one. A query on the aggregate database must be seam-
lessly divided into subqueries which operate on the individual databases, and
the results of these queries have to be merged into one query result.

To actually integrate the databases, the schemata of the databases are com-
pared, and fields in different databases but with similar semantics are identi-
fied. For example, one database may relate students to courses, and another
database may relate names to their birth dates: the student and name fields
can then be used to relate courses to birth dates. (See Figure 7.1.)

When tying databases together in this way, two problems frequently oc-
cur. First, it is difficult to make sure that all matches that should be found be-
tween different individual databases are actually established. This is typically
due to different ways of encoding the same information in different databases.
Second, where the individual databases may be internally consistent, the joint
databases may very well be inconsistent.

The common denominator in addressing these problems is to expose more
information. Making more information available allows for more matches to be
found, and allows for inconsistencies to be detected. Thus it seems necessary
to expose a lot of information in order to achieve proper information integra-
tion. From the privacy and anonymity perspective, a priori exposing a lot of
information is out of the question. This suggests that information integration
on the one hand, and confidentiality on the other hand, are not on comfortable
terms.

84 Chapter 7. Information Designators

At this point, it is good to make some remarks on what we mean by infor-
mation integration. In the abstract sense, information integration is the act or
process of making sure that information stored and maintained at separate lo-
cations and organizations, can be combined with ease and without introducing
inconsistencies.

Roughly, there are two ways to accomplish this goal. The first way is to take
a number of information sources, and perform the difficult and tedious task of
matching the information at the different locations. This includes among others
record matching, data re-identification, record linkage, and this is what is tradi-
tionally understood when one refers to information integration [GK05, DH05].
However, there is another, second way of achieving the goal of assuring the
easy combination of dislocated information, which will be our approach. The
main idea is to anticipate the combining of information at the moment the in-
dividual information sources are set up. In Section 7.2, we will show how this
can be done without assuming a trusted central authority and without disclos-
ing information which may need to remain confidential. We consider such an
approach an important step towards solving the problems of information in-
tegration, though it is somewhat nonstandard, if compared to the traditional
meaning of information integration.

7.1.1 Overlapping Ontologies

An ontology defines, for a single information source, what the information
stored in the source represents, and how it is structured [AvH04]. Within the
relational database paradigm, a database schema can be seen as the implemen-
tation of such an ontology. When information sources are combined, this is
done by comparing the ontologies of the different sources. If the ontologies
overlap sufficiently, or if it is possible to map parts of one ontology onto some
parts of the other ontology, the information from the two sources can be linked.

The individual information sources are almost always stand-alone infor-
mation systems by origin. Because of this origin, these systems store many
kinds of information, since they have (had) to maximally support the own-
ing organization. For example, a university database typically stores a lot of
details about students, like students’ previous educations, birth dates, private
addresses. This information is stored because at some moment in time the uni-
versity will need it for some task.

As a result the information sources subject to information integration tend
to have a rather large ontology. It can even be argued that information integra-
tion happens because the ontologies grow so large that it is no longer viable
for one single organization to maintain all information within one stand-alone
information system. Keeping track of how all information should be modeled,
as well as actually obtaining all the information for a single, large stand-alone
information system becomes very complicated when information from sources
outside of the organization have to be included.

It can be expected that in the example of the university database, inaccura-
cies will exist in the information that comes from outside of the organization.

7.1. Information Integration and its Challenges 85

Minor inaccuracies may arise from data-entry, bigger inaccuracies may arise
from updating the information infrequently or not at all. Intricate inaccuracies
may occur when the ontology does not have enough expressive power to facil-
itate the information that should be stored. When inaccurate information from
various sources is combined, this will almost inevitably lead to inconsistencies.

It should be expected that the information in the university database con-
cerning the core university activities, such as course enrollments, grades and
diplomas given, is essentially, if not by definition, correct.

An organization which creates new information is probably the best suited
organization to model this information, and to maintain an ontology of this
information. However, it is not unusual for such an organization to maintain
an ontology covering more than the core business of the organization itself, but
also to maintain a part of its ontology which is error-prone, and essentially a
duplicate of many parts of many other ontologies of other organizations.

If the overlapping parts of the information sources’ ontologies contain per-
sonal information, this means that this personal information is stored at sev-
eral sites. If for whatever reason this information should be kept under some
restricted disclosure regime, all sites storing this information should adhere to
the restricted disclosure regime. Obviously, it may be impossible to enforce
this, which means that the information is kept private just insofar the weakest
link does not disclose it. Information stored at only one site is easier to con-
trol, since there is only one party which has to adhere to a specific disclosure
regime.

7.1.2 Information Propagation

The reason for linking information sources, i.e., to perform information inte-
gration, is twofold from the perspective of a participating organization. First,
the organization wants to retrieve authoritative information from external
sources. When retrieving data, the desiderata are availability and integrity of
the information. Second, the organization wants to publish information, but
possibly only to a restricted set of consumers for some restricted set of appli-
cation uses. When publishing data, enforcing dissemination policies is the main
challenge.2 These aims and interests of the participating organizations are de-
picted in Figure 7.1.

To maximize integrity of information, it would be good to verify the infor-
mation at the authoritative source, as shortly as possible before actually using
the information. Better could even be to just fetch the authoritative information
at use-time. To prevent unwanted dissemination of information, best would be
to verify that for each time the information is used, there is a legitimate reason
to use this information. This can be achieved by requiring authorization for
each individual ‘shipment’ of information, and to make sure the information
can only be used for the purpose stated in the authorization procedure.

2 It is rarely if ever the case that an organization would want to directly alter information that is
within the realm of another organization.

86 Chapter 7. Information Designators

information publisher

main aims & interests:

1. facilitate intended use
2. enforce dissemination policy

request
�

-

information

(both bound
to specific

application use)

information user

main aims & interests:

1. availability
2. integrity

FIGURE 7.1: The main aims and interests for organizations participating in in-
formation integration. Virtually every organization in an information integra-
tion setting is both user of some externally published information, and publisher
of some other information. This figure depicts the interests for one organiza-
tion in the role of information publisher and another in the role of information user
with respect to one ‘piece’ of information.

This leads to a central adage in our approach:

Don’t propagate, but link!

Information should only be disclosed when it is really about to be used, and
not at any time before that. At the very best, the disclosed information should
be destroyed immediately after use.

This adage may seem very unrealistic in two ways. First, it has to be prop-
erly defined what ‘using information’ actually means. If it is too widely de-
fined, it does not really restrict dissemination. For example, if counting the
existence of a piece of information (such as when counting students in a room)
is regarded as ‘using’ information, counting a student would lead to disclo-
sure of his personal information. If ‘using information’ is too strictly defined,
it prevents any sensible use of information.

Information designators, introduced and explained in the next section, will
solve this apparent paradox. Second, one may question whether not propa-
gating information would lead to unacceptable performance bottlenecks in the
resulting information system. Assuring proper information granularity will
minimize, if not circumvent this problem. Information designators are the in-
strument that will offer us the flexibility to reason about information that is
not physically present. This may lower the capacity of information sources to
disseminate information, but it will give the information holder much more
control over who has access to what information.

7.2. A Joint Approach to Privacy, Anonymity and Information Integration 87

7.2 A Joint Approach to Privacy, Anonymity and In-
formation Integration

In this section, we will present our approach to solving information integra-
tion and dissemination control. First, we introduce the information designator in
Section 7.2.1. Section 7.2.2 explains how, using information designators, infor-
mation from various sources can be tied together, while these sources remain
in control over their information. Moreover, in Section 7.2.3 we explain how an
organization that provides information designators to others, can accurately
manipulate which others can actually use the provided information designa-
tors, and to what extent.

7.2.1 Information Designators

The central instrument in our approach is the information designator, which is a
piece of information whose sole purpose it is to refer to other information with-
out containing the other information and without any reference to a context.
Every designator contains an address at which a software agent, an exchange
agent, can be contacted to translate the designator into the information it refers
to. An exchange agent may place restrictions or conditions on the information
requester before it translates a designator into the information it refers to.

An example of a designator could be 12345.67890. If Bob were to ask
Alice her home address, she could give Bob this designator. Bob then knows
that if he wants to send postal mail to Alice’s home, he must contact the ex-
change agent at 123453, and hand over to the exchange agent the full desig-
nator 12345.67890. In turn, if Bob meets the conditions set by the exchange
agent, Bob will receive Alice’s home address. The fact that the designator refers
to Alice’s home address, cannot be inferred from the designator itself. Bob
only knows the designator has this semantics because Alice told Bob so. Alice
should make sure that the exchange agent will answer Bob’s call for informa-
tion in the right way.

The process of Bob obtaining Alice’s home address is now a two-step pro-
cess, as follows:

• The principal step is the one in which Bob asks Alice her home address,
and possibly after some combination of authorization and agreeing on
some terms, Alice hands over the information designator to Bob. From
that moment on, until Bob contacts the exchange agent, the designator
is something like an ‘I owe you’ (IOU) of Alice to Bob, where the debt
of Alice is the information that stands for her home address. Though
Alice has granted Bob access to the information of her home address,
she has still control over it. Alice can change her home address without
any administrative burden to Bob. Also, Alice can retract her designator

3 This could be a phone number, IP address, or something else that allows setting up a commu-
nication channel in an automated way.

88 Chapter 7. Information Designators

by instructing the exchange agent not to give Bob the information the
designator refers (or: referred) to.

• The second step is the materialization step, in which Bob contacts the ex-
change agent. If Alice hasn’t retracted the designator, and Bob meets the
conditions set by the exchange agent, Bob will obtain the information that
is Alice’s home address.

The use of this kind of mapping allows for changing of the information
referred to without the need to update references. This would allow
telecom operators to redistribute phone numbers, or the city council of
Tel Aviv to rename the “Malchei Yisrael Square” into the “Yitzhak Rabin
Square” without introducing inconsistencies into databases where these
numbers or names are referred to.4

This flexible use of designators has benefits for both the users of informa-
tion and the providers of information. The users of information have access to
the information they need, but they do not need to worry about the housekeep-
ing of this information. Barring unforeseen exceptions, the users are guaran-
teed access to the information. At the same time, the providers of information
are given greater control over the dissemination of the information, and can
individually audit the use of the information.

The architecture presented here could be considered to be a peer-to-peer
(P2P) data management system (PDMS), like the Piazza PDMS [HIM+04].
However, the PDMSs we know of lack the concept of an information desig-
nator, and do not distinguish between raw information, and a reference to such
information. In fact, techniques used in the web services and the semantic web
[ACKM04] and PDMSs are generally a vehicle to ease the problem of schema
integration, whereas the information designator is a means to bypass the prob-
lem of schema integration.

7.2.2 Dependency and (Un)linkability

It may seem that by using information designators, the users of information
are subject to possible arbitrary behavior of the providers of information. For
example, the providers might choose to instruct their exchange agents to fur-
ther deny any information to the users. We do not believe that this scenario
is any more likely to happen than in a context where another mechanism for
information integration is used. Even stronger, we believe the possibility to re-
tract designators on an individual basis may well happen to be an essential re-
quirement for many organizations to participate in an information integration
project. More organizations will be willing to provide information, because

4 Thus, because the ‘raw data’ such as a street name is separated from the concept of what it
represents in the data structure, it is possible to perform database transactions on the ‘raw data’
without even touching the database records that link to the ‘raw data’. From the perspective of
complex database transactions and the frame problem, this is an interesting feature [Rei95].

7.2. A Joint Approach to Privacy, Anonymity and Information Integration 89

they have the option to retract the information in the case of an unlikely or
unforeseen event.

Using information designators makes existing informational dependencies
of organizations explicit. If an organization depends for some task on infor-
mation from another organization, this will inevitably lead to an infrastructure
in which designators are used whose corresponding exchange agents operate
under the auspice of the organization depended on.

The information designator approach has the very interesting property that
if it is fully applied, there need not be overlapping ontologies. Different orga-
nizations provide information under their own, simultaneously provided on-
tology. If this information is used, the provided ontology will be used. If this
information is related to information from some other ontology, it will be re-
lated by means of a designator in the one ontology, pointing to information
in the other ontology. Technically this means that instead of multiple infor-
mation sources storing identical information, there is one information source
that stores the original information, while other information sources store ref-
erences (information designators) to this original information. In this sense,
designators are the glue between ontologies, that allows ontologies to be dis-
joint, but integrated at the same time.

Disjointness of ontologies is an extremely useful feature from both the in-
formation integration and from the privacy and anonymity perspective. It ef-
fectively makes it impossible for conflicting information on one subject to be
established, which seriously limits the class of possible inconsistencies that can
arise from linking information.5 At the same time, information can be linked
without automatically disclosing a part of the linked information: information
‘normally’ (otherwise) made public can be kept private.

7.2.3 Operations on Designators

One could wonder whether introducing designators actually improves privacy
and anonymity, by reasoning that the designators themselves will fulfill the
role of identifying information; that a person is not identified by his or her
name, but by the designator that refers to his or her name. This would indeed
be the case, if for each piece of information, there would only be one designator
referring to it. If multiple parties would have this same designator, they could
recognize that the information they individually have is about the same person
or artifact.

However, it is nowhere necessary that each piece of information has only one
designator pointing to it. In fact, the introduction of designators would have
little to offer on the privacy and anonymity front if each piece of information
would have its unique corresponding designator. An organization handing
out designators could in fact every time it hands out a designator, create an

5 The claim is somewhat weak, and this is on purpose: there might be other classes of inconsis-
tencies we have not thought of. As we cannot prove to prevent all types of inconsistency, we
will not claim so.

90 Chapter 7. Information Designators

extra ‘fully anonymous’ designator for the information it needs to point to.6

In this scenario, the organization handing out designators knows for sure that
the designators it handed out cannot be combined in any way to find matches
between designators.

There are excitingly many policies between strictly unique designators on
the one hand and fully anonymous designators. Here, we will mention just a
few. Designators to the same piece of information could be the same, if given to
the same requesting organization, or if given to an organization in some given
group, thereby allowing the organization or group of organizations to com-
pare their designators. It is totally at the discretion of an organization handing
out designators to decide whether its designators will have these properties.
Also, it could provide these properties to some users of information, and not
to others. The closer the policy is to strictly unique designators, the more re-
combination possibilities there are that need no consent of the organization
that handed out the designators.

An organization handing out designators does not have to fully decide on
its policy when it starts handing out designators. For example, it could by
default hand out only fully anonymous designators, and upon special request
exchange some of the designators for designators that can be recombined in
some specific way. A user or group of users could for example ask the specific
question if within a specific set of their designators, some refer to the same
information. The organization handing out designators could in turn translate
the given specific set into other designators in such a way that only within this
set duplicates can be detected.

Depending on policy decisions, the extent to which designators are valu-
able to users can be varied in a very precise way. Organizations handing out
designators can choose to make their designators on a per-user and per-trans-
action basis, homomorphic to the information the designators refer to.

7.3 An Example: the Datamining Bookshop

The information designator is more than a theoretical concept. In fact, we have
built a prototype system which demonstrates several of the above-mentioned
properties. The prototype illustrates an example of information integration
and information exchange which would, without information designators, ei-
ther be impossible or it would seriously infringe privacy. We present the pro-
totype here for three purposes:

1. to stress that information designator systems can actually be built [Hid04],

6 Creating an extra designator every time a designator is handed out will not have any serious
impact on the required storage capacity of the exchange agent. This can be achieved for ex-
ample by designators that actually are encrypted versions of a master designator, of which the
exchange agent is the only agent knowing the decryption key. For more examples of designator
obfuscation, see Section 7.4.

7.3. An Example: the Datamining Bookshop 91

2. to show how an information designator system works internally, thereby
illustrating the subject matters explained in the previous section, and

3. to give an application example which demonstrates how information
designators help in protecting privacy and maintaining unlinkability.

7.3.1 Organizational Setting

Our example is about information flow between the following four organiza-
tions.

Civic Authority This organization has the task to maintain the municipal in-
habitants register, which contains inhabitants’ names, birth dates, and
residence addresses.

Local School The students of the local school live in the domain of the civic
authority. The local school keeps record of its students, their results, their
course enrollments and required literature for courses.

Local Bookshop This organization is located conveniently next to the local
school. The local bookshop wants to provide for the literature demands
from the local school students, but does not want to overstock.

Book Publisher This organization publishes the books that are used in the
courses of the local school. The book publisher maintains information
about books and their details, such as titles, authors and ordering infor-
mation.

There are many relations between the information maintained by these or-
ganizations. The students of the local school are all registered at the civic
authority. Contrary to the book publisher and the local bookshop, the local
school has the right to access some of the information stored and maintained
by the civic authority. The books the local school recommends for their var-
ious courses, are all published by the book publisher. The book publisher is
fairly liberal in allowing access to the information about its books, however, it
has some extra information for its known resellers, one of which is the local
bookshop.

The local bookshop has a strong desire not to overstock books, and at the
same time the local school wishes all their students to have their obligatory
books when the term starts. As a result, the local school depends on the behav-
ior of the local bookshop, and the local bookshop depends on information from
the local school. A very naive way to solve this dependency would be that the
local school gives the local bookshop full access to the local school administra-
tion. This would obviously lead to unacceptable privacy infringements, even
if the local school would limit the access to things like course enrollments (and
hide exam results). A slightly less naive solution would be that the local school
gives the local bookshop an update of the expected number of required books
once in a while. However, these updates are just snapshots. It would be ideal

92 Chapter 7. Information Designators

Civic Authority Book Publisher

A
A

A
A

A
AK

uses person
inf.desgs.

�
�
�
�
�
��

uses book
inf.desgs.

Local School

A
A

A
A

A
AK

uses book inf.desgs.
and anonymized

person and course inf.desgs.

6

uses
book
inf.

desgs.

Local Bookshop

FIGURE 7.2: An information dependency graph containing the four organiza-
tions of the example. The organizations and their information demands are
described in Section 7.3.1. An arrow from organization A leading to B means
that A is interested in information maintained by B. For example, the local
bookshop depends on (desires) information from both the local school and the
book publisher. ‘Information designators’ is abbreviated to ‘inf.desgs.’.

for the local bookshop to directly look in the administration of the local school
at the moments relevant for the local bookshop. If this would not infringe on
the privacy of the students, the local school would probably find such a solu-
tion fairly unproblematic.

Figure 7.2 shows how the four organizations relate to one another with re-
spect to their information needs.

The example may seem a perfect case for setting up a Web Service frame-
work [ACKM04]. However, a Web Service framework would offer only a
means for exchanging information, while the use of information designators
offers a means for assuring mutual information integrity and consistency while
keeping almost all information confidential. The confidentiality and integrity
is not manually crafted into the architecture, it is a mere consequence of using
information designator technology.

7.3.2 Designators in Action

The information that is maintained by the organizations is summarized in ta-
ble 7.2. The table shows the schemata of the local databases. These might be
plain vanilla relational databases, in which the ‘person’ field contains a string
which denominates the person’s name. This is however not the case. All fields

7.3. An Example: the Datamining Bookshop 93

providing organization table name field 1 field 2
civic authority names person name
civic authority birthdates person date
local school students - person
local school courses course name
local school enrollments course person
local school literature course book
book publisher book details book details

TABLE 7.2: The schemata of the information that is maintained by the civic
authority, the local school and the book publisher. The fields written in italics
contain designators from an external organization. The fields in bold contain
raw data, that is, information which is not a designator, and therefore read-
ily interpretable. The fields written in normal font, are designators which are
locally defined.

contain information designators. Some designators are created by the local or-
ganization, like the designators stored in the ‘course’ fields. The content of
these fields is fully defined by the local school; the local school creates the des-
ignators that refer to the various courses offered by the local school. Some
other designators are foreign, they originate from outside the organization. The
‘person’ designators are created by the civic authority, and the local school’s
‘person’ fields are an example of fields which will be filled by such foreign des-
ignators. In this way, the local school database is linked to the database of the
civic authority. A similar link exists to the database of the book publisher. The
‘names’, ‘birthdates’, ‘courses’ and ‘details’ are the only tables also containing
raw data that is not encoded via a designator.

The local bookshop desires a summary which states how many copies of
each book can be expected to be sold. Executing the global SQL query shown
in Figure 7.3 would provide this information. The local bookshop should make
sure that this query is executed, and that parties providing necessary informa-
tion cooperate sufficiently.

To execute this query, access is needed to the ‘enrollments’ and ‘literature’
tables from the local school, and to the ‘book details’ table from the book pub-
lisher. There are essentially two ways to execute the query. First, the query
could be divided into two subqueries. The first subquery is executed by the
local school, its results are sent to the book publisher, which performs the sec-
ond subquery, and the merged result is forwarded to the local bookshop. This
solution works, but for more complex queries, it will become quite difficult to
divide the query into subqueries. Also, the intermediate query results could
leak information. The second solution could be to grant the local bookshop
read access to the required tables. If these tables were ‘plain vanilla’ relational
databases, access to these tables would have disclosed detailed information
about the interests and advances of named students. This would be a very ob-

94 Chapter 7. Information Designators

SELECT COUNT(DISTINCT person),details
FROM enrollments
JOIN literature USING (course)
JOIN book_details USING (book)

GROUP BY book;

FIGURE 7.3: A global SQL query, which would provide the local bookshop
with the information it desires: details of each of the books needed by the stu-
dents of the local school, and the number of required copies of each of these
books. To obtain this desired table, the ‘enrollments’ and ‘literature’ table of
the local school are consulted, as well as the ‘book details’ table of the book
publisher.

vious example of privacy violation. However, if the following three conditions
are met, the privacy conditions are much improved.

1. The information in the tables does not contain sensitive information.

2. The information in the tables cannot be used to retrieve sensitive infor-
mation.

3. The information in the tables cannot be combined with external tables to
infer sensitive information.

We will show how designators can be used to make sure the tables of the lo-
cal school satisfy these properties. First, by using designators, it is ensured that
no raw identifiable data is stored in the tables, hereby meeting condition 1. Sat-
isfying condition 2 is somewhat more complicated, but well doable. It should
be made sure that though the designators can be used by the local school to re-
trieve information, this cannot be done by others. In fact, it can be expected
that the civic authority would only grant the local school access to its informa-
tion in case it can make sure the local school will not leak the information. The
solution to condition 2 lies in the civic authority, which can create designators
especially for use by the local school in such a way that others, such as the lo-
cal bookshop, cannot materialize the designators. How this is done technically
and in an efficient way is shown in Section 7.4.

Condition 3 can be met by making sure the designators given to the local
bookshop do not match designators referring to sensitive information the local
bookshop may have found elsewhere. Thus, the designators given to the local
bookshop should be unlinkable. However, the internal correspondences be-
tween the tables should remain intact. In our example, if a student occurs mul-
tiple times in the enrollments table, all these occurrences should be replaced
by the same designator. Yet what the actual content of the designator is, is irrel-
evant and may therefore be altered. A way to create such designators on the
spot is shown in Section 7.4.

If all three conditions are met, there is no problem in granting the local
bookshop full access to the ‘enrollments’ and ‘literature’ tables as maintained

7.3. An Example: the Datamining Bookshop 95

by the local school. The book publisher grants the local bookshop access to its
‘book details’ table and everything is solved. That is, everything is solved from
the privacy and unlinkability perspective, while still giving the local bookshop
a royal amount of freedom in accessing the information it desires to have. The
local bookshop can get up-to-date information at any moment it wishes.

Still, there is a lot to optimize. Of course, the local bookshop might retrieve
the full contents of the ‘enrollments’ and ‘literature’ tables, and perform the
joins by itself, but it is easy to see that this would require a high amount of
communication. It may well be the case that using subqueries and executing
subqueries at various different locations is resource-wise a more optimal solu-
tion. Therefore, the ideal approach should be liberal in allowing queries to be
divided into subqueries. Our approach is such an approach, and this will be
the focus of the next section.

7.3.3 Observations About the Use of Subqueries

The approach to the question whether or not to use subqueries when assess-
ing a global query may seem unusual. First, we found subqueries difficult,
information-leaking instruments. So instead, we granted access to all informa-
tion sources, but we ensured that nothing sensitive was left in these informa-
tion sources. Then, we observed that though operating correctly, our solution
would be very inefficient so we re-allowed the use of subqueries.

However, in making a detour away from and back to the use of subqueries,
we have ensured a very important property. Namely, we have obtained that
any result from any subquery cannot be linked to sensitive information, be-
cause the information it stems from cannot be linked to sensitive information.
Thus, we have a guarantee about the unlinkability of the subquery results. Not
only have the tables from the civic authority not been accessed during query
execution, also the subquery results and query result offer nothing that might
help in getting access to the civic authority’s tables.

The alternative to this detour would be that for each query it would need to
be assessed whether the answer would somehow leak too much information.
In this assessment, answers received from previous queries should be taken
into account. This easily would become complex, not to say unmanageable.
The designator approach is liberal in the sense that any query which can be
resolved using the ‘obfuscated tables’ is allowed, and restrictive in the sense
that any query which cannot be resolved in this way is not allowed. In effect,
linking information across organizations and hiding information from other
‘third’ organizations can go hand in hand in an elegant and easy way.

The detour has in fact something more to offer. Since subquery results
cannot contain sensitive information, global queries may be divided into sub-
queries in any way that happens to be resource-wise the most optimal. The
subqueries could be executed by the organizations offering the information
(e.g. the local school), but also be executed by mobile agents on behalf of the
information users (e.g. the local bookshop).

96 Chapter 7. Information Designators

7.4 Methods for Restricting Designator Uses

In Section 7.3.2, we have assumed that it is viable to ensure certain properties of
designators, such as that it is impossible to recombine designators in specific
ways. In this section, we sketch tentative solutions for creating designators
which satisfy these properties.

All examples are about three organizations, A, B and C. Organization A
(the information publisher) is always the organization handing out a designa-
tor to B, sometimes also to C (the information users). Most of the solutions
we present assume (deterministic) asymmetric encryption with signatures (e.g.
RSA [RSA78]). When a cryptographic hash function H(·) is used, it is assumed
that it is a correlation-free non-incremental cryptographic hash function (see
Chapter 3 and Section 3.6).

Organization A internally uses designators, which we will refer to as master
designators. The designator it hands out to organization B will be called a user-
bound designator. Organization A has a private secret, S. The public and private
keys of A are +KA and −KA, and similarly the public and private keys of B
and C are +KB , −KB , +KC and −KC , respectively.

The methods described in thesis section can easily be combined within one
step, if necessary. The purpose of showing these methods is to show that it can
be done, and roughly how, omitting the deepest technical details. We do not
claim that these ways of solving the problems are necessarily the best or most
efficient ones.

1. Designators that can only be materialized by a specific user

Consider an organization A that would like to hand out designators to its
own information to organization B, granting B access to the information
maintained by A. At the same time, A wants to make sure only B can
materialize the designators. However, A lacks the capacity to maintain
a record of each individual designator it hands out, since this would re-
quire storage space for each designator handed out, and it would require
computation time to look up each designator in this storage at the time
of materialization.

Now, if A wants to grant B access to the information referred to by the
master designator D, it hands out the user-bound designator DB :

DB = {D,+KB , access-specification, S}+KA

where access-specification may be some extra information restricting the
access of B to D. The user-bound designator DB is given to B. Nobody
but A can decrypt DB . If at some moment later in time B wishes to
materialize the designator, it has to send {DB}−KB

(a signed copy of the
designator DB)7 to A. In turn, A will decrypt DB (using his private key

7 It has to be made sure that A can decrypt DB before verification of the signature, since the
public key +KB required for verification is stored within DB . A ‘two-step’ signature scheme
can facilitate this.

7.4. Methods for Restricting Designator Uses 97

−KA), and verify whether the signature matches the public key +KB

found in the decrypted DB . If either decryption fails, or the signature
cannot be verified, or the secret is not present, or the access-specification
is not met, then A will refuse to present the materialization of D.

If DB
M falls into the hands of a third organization, say C, this third orga-

nization cannot materialize the designator since C is unable to forge B’s
signature.

2. Designators that cannot be recombined by multiple users

Consider an organization A that wants to hand out designators to both
B and C, but wants to prevent that B and C can combine their informa-
tion. Designators should be unique with respect to the information they
refer to, but only within the realm of one single user. Thus, if B receives
two designators DB

1 , DB
2 , it can infer whether they refer to the same in-

formation by verifying whether DB
1 itself is equal to DB

2 . However, if C
receives designator DC

3 , B and C should not be able to find out whether
DC

3 is equal to either DB
1 or DB

2 (without cooperation of the organization
that handed out the designators, namely A).

If A wants to create such a user-bound designator to B, it hands out the
following designator to B:

DB = {D,B, S}+KA

If the designator never needs to be looked up by organization A, the fol-
lowing simpler solution would also suffice:

DB = H(D,B, S)

Because all steps in generating the user-bound designator are determinis-
tic, uniqueness of designators is preserved as long as the requesting user
(i.e., B) remains the same. However, if both B and C get a designator
which refers to the information D refers to, these designators will not be
mutually comparable.

3. Designators that cannot be recombined over time

Consider an organization A that would like to allow users to analyze the
structure of the information at a specific moment in time, but does not
want to allow the users to analyze how the structure evolves over time.
For example, in the local bookshop scenario, the local school would like
to prevent the local bookshop from finding out how long students are
studying at the local school. Thus, designators should only be uniquely
referring to information if these designators are all obtained at the same
moment in time.

To enforce this property, A can create time-dependent designators Dt in
the following way:

Dt = {D, t, S}+KA

98 Chapter 7. Information Designators

where t is the moment in time when the designator is created. Essentially,
t is a time interval, and some care must be taken in choosing the size
of this time interval. To be useful, t should not be too small, because
otherwise too little designators from the same time frame would exist to
make any snapshot inferences. Depending on the application domain,
the interval could be as long as a minute, day, week or possibly even a
longer period of time.

If the designator never needs to be looked up by organization A, the fol-
lowing simpler solution would also suffice:

Dt = H(D, t, S)

Note that this solution does not require a global clock, but only a local
clock for A.

The space requirements (i.e., size) of designators are only limited. A des-
ignator which is constructed using a cryptographic hash function is trivially
bounded in length, with current cryptographic hash functions only a few hun-
dred bits. A designator which is constructed using an encryption step is bigger
than the designator it encapsulates by a constant factor. A designator never
reveals the length of the information it designates.

7.5 Discussion and Related Work

The use of information designators that we introduce in this chapter allows
information systems to fulfill many different roles at the same time. They can
simultaneously be a transaction system, a public information system, subject to
datamining, and still hide the information contained. Moreover, integrity can
be guaranteed to an extent higher than normal for information integration sys-
tems. Two important properties of the information designator system enable
the seamless combination of these roles:

1. The information system can supply to different users different ‘views’ of
the information it has, but these views are only mutually comparable if
the providing information system explicitly allows and enables this.

2. The information contained in these views (i.e., in the returned records) is
not interpretable without the explicit cooperation of the providing infor-
mation system.

As a result, an information system can choose to allow extensive analysis
of its information, without disclosing sensitive records within this information
[LP00]. This is useful in applications where it is undesirable for individual
records to be disclosed (this would for example harm someone’s privacy) but
at the same time it is not a problem to produce and use accurate aggregate

7.5. Discussion and Related Work 99

statistics of the information [ESAG02]. Simultaneously, administrative infor-
mation exchange about such details between organizations remains possible.

An information designator can be seen as a pseudonym for information.
While pseudonyms are typically associated with persons (as in [Cha81, Cha85,
Cha92]), there is no conceptual problem in using codewords to denominate
a piece of information which does not refer to a person. In this perspective,
a pseudonym is just a special case of an information designator. Moreover,
we have generalized the idea of using multiple pseudonyms for one person
to using multiple designators for one piece of information. The decision when
information designators should and can be materialized is of course essentially
a policy issue which has to reflect the opinions of the participants involved.
Identity escrow schemes [KP98] and threshold-based privacy solutions [JLS02]
can be seen as special cases of solutions possible with our approach.

Information designators offer a mechanism to reason about information
that is not physically present. If properly authorized, it is possible to retrieve
the information that an information designator refers to. However, it is also
possible to retrieve only some properties of the information designator at hand.
In an insurance company for example, the claim experts normally see the
names of the clients, because these are part of the portfolio, and are needed
for subsequent steps in the claim handling process. For establishing a good
judgment, the claim expert does not need the name of the client; it may even
be argued that he will judge more fairly if he does not know the name of the
client at hand. Similar considerations apply to tasks like the judging of job ap-
plications. Using designators, it would be relatively easy to create workflow
systems that hide all information but the information relevant in the specific
step of the workflow system [TvdRO03].

Reasoning about information without disclosing raw data is also subject
of Chapters 8–10 of this thesis, in which we present protocols for comparing
secrets for equality without disclosing the contents of the secrets [FNW96]. In
Chapters 8–10, we consider two agents, both possessing ‘raw data’, and these
agents are interested in comparing their raw data mutually without disclosing
it in case the data is not equal. In that chapter we demonstrate that it is also
possible to compare information that is not even present at any of the two agents
involved. However, the organization that owns the information compared has
to deliberately allow this comparison.

Thus, for the sake of the protocols of the next chapters, the information
designators could be considered as ‘raw data’. This allows for example two
organizations, who have pools of ‘anonymous data items’, to compute the in-
tersection of these pools without identification of the data items themselves. Such a
rather counter-intuitive computation may have a number of applications, such
as privacy-respecting informed policy-making.

In [FGR92, FLW91], cryptography is used to protect the contents of data-
bases on a record level and field level, which has some similarities to our ap-
proach. However, in [FGR92, FLW91], no cooperation from the information
provider is required to materialize raw data. Our approach allows the infor-

100 Chapter 7. Information Designators

mation provider to refuse materialization of data, which is a means of control
after information has been disclosed in the form of information designators.

Other approaches choose to protect the privacy of the users against analy-
sis of their queries by the information provider (private information retrieval)
[CGKS98], or to distrust the information provider to inspect the information
it stores [SWP00]. Although these are not primary goals of our approach, we
believe that similar concepts could be implemented in information designator
systems. Indeed, when an organization stores designators which it cannot ma-
terialize, this organization is seriously limited in analyzing and linking its data
and the queries it receives from users.

The database representations suggested in our work form a radical depar-
ture from some of the basics of relational databases [Cod70]. First, the tables of
the database are no longer filled with actual raw data, but with some kind of
‘global pointers’, i.e., information designators. These designators point to in-
formation which is vertically fragmented over distributed information providers
[CK85, BKK95, Bon02]. The ontologies of these providers do not overlap, which
is dramatically different from most uses of ontologies [Gua98, UG96], and also
noticeably different from the ontology use in the semantic web community
[DMDH02].

7.6 Conclusion

In this chapter, we have described a way of structuring and linking informa-
tion that is totally different from the way that information is structured and
linked nowadays. Nowadays, it is common that information systems store
raw data, and replicate data almost abundantly. The information designator
approach is technically not yet sufficiently fleshed out to be applied to large-
scale production-quality information systems. Also, lack of integration with
existing legacy systems and lack of a critical mass of information systems using
information designators, are currently prohibitive for a widespread adoption.

It is not our goal to present an instantly applicable technique. We want to
demonstrate that information integration on the one hand, and privacy, un-
linkability, confidentiality and related considerations on the other hand, can
go hand in hand. In the presented information designator approach, goals like
fluent information integration, information exchange and tight dissemination
policy enforcement can be satisfied simultaneously.

In line with this, we believe that the apparent trade-off between privacy
and availability of information may not be as rigid as commonly believed. The
strong common belief in this apparent trade-off is a result of using information
systems in which raw data is exchanged. Therefore, we believe abandoning in-
formation systems which mainly manipulate raw data may be part of the way
to overcome the misunderstanding that information exchange and privacy can
not be simultaneously established.

Chapter 8

The question ‘do you know the secrets that I
know?’ is a tricky one. We explore what a

protocol must do in order to provide an answer to
such questions. We distinguish the 1-to-many

case and the many-to-many case, and survey
protocols which solve these cases. There are no
protocols in the literature yet which solve these

cases where the domain of possible secrets is huge,
except for the protocols (T-1 and T-2) we will

present in the next chapters.

Knowledge Authentication

We will introduce the objective of the material presented in this chapter by a
rather innocent real-world situation which has actually occurred:

Geertje and Wouter are two friends and colleagues. Geertje has told
Wouter in private that she is expecting a baby.1 Just a few days later,
Wouter meets the secretary at the coffee corner. The secretary looks
expectantly to Wouter. Wouter would like to gossip with the sec-
retary about Geertje’s pregnancy. But Wouter has also promised
Geertje not to disclose the secret of her pregnancy. If Wouter wants
to keep his promise, he can only start gossiping about Geertje’s
pregnancy if he can be certain that the secretary already knew the
secret. Wouter cannot simply ask the secretary whether she knew,
because such a question would disclose the secret.

Similarly, the secretary might know the secret, and could also have
promised not to disclose the secret. In the case that both the secre-
tary and Wouter know the secret, they are allowed to gossip.2

Is there a strategy for the secretary and Wouter that enables them to mu-
tually establish whether they know of Geertje’s pregnancy without disclos-
ing this secret? The answer is yes. We will call protocols that solve this type
of problem protocols for knowledge authentication: authentication based on the
knowledge of an actor — instead of based on the identity or role of the actor.

Protocols for knowledge authentication can be used to grant somebody access
to confidential information based on his or her knowledge, instead of (only)

1 The baby was born on May 24, 2004. Her name is Marloes and she is really cute.
2 Of course, they should make sure not to be overheard, and the coffee corner is probably not the

best location for not being overheard.

101

102 Chapter 8. Knowledge Authentication

based on his or her identity and role.3 In the above example, successful au-
thentication grants access to quotes and sentences which should be described
as ‘gossip’.

In this chapter, we will precisely define the the fundamental problem that is
exemplified in the above story. We will survey and categorize what solutions
for this problem exist in the literature. In Chapters 9 and 10, we will present
our solutions to this problem, which are more general and more efficient than
all existing solutions.

8.1 Application Areas of Gossip

The desire to gossip may be an interesting occasion to devise protocols and
touch upon fundamental research issues, but the application areas of the pro-
tocols defined in this chapter reach further than the social talk at the coffee cor-
ner. We will present two application areas where ‘cautious gossip’ has valuable
applications.

8.1.1 Police Investigations

The situation that initiated the design of protocols for knowledge authentication
has been arguably a more important than coffee corner gossip:

When a research team of the police performs an investigation on
some crime, they register the people who are victims, the people
who are witnesses, and the people who are suspects. If two inde-
pendent crimes are investigated, it may be the case that somebody
is suspect of two independent criminal acts. If the research teams of
the two crimes do not communicate, they can easily harm one an-
other’s research. For example, one research team may be shadow-
ing the suspect, and the other team may want to arrest the suspect.
If the research teams do not communicate, it can be expected that
something will go wrong in at least one of the investigations.

How can a research team know that some other research team is
investigating the same person?

One solution for this police problem could be that the police has an or-
ganization-wide notice board on which all victims, witnesses and suspects are
listed. The current solution in the Dutch police4 is not very much unlike this
one: a police officer can enter a name in the computer, and will get a list of
research teams investigating the person.

3 This should not be confused with protocols for private authentication [AF04], which are protocols
where the identity of a principal is only proven to a restricted set of possible communication
partners.

4 See Section 1.5 for a detailed description of the current solution in the Dutch police.

8.1. Application Areas of Gossip 103

The Dutch police has thousands of criminal investigators. All of these in-
vestigators have made an oath which morally binds them to righteous behav-
ior. The sheer number of police investigators entails that one can be sure that at
least some of them will be corrupt and malicious. Thus, an organization-wide
notice board that can only be consulted by officers who have made an oath is
not a good solution; just a few corrupt officers who leak the information on the
notice board can be enough to help some criminals escape the fate they deserve
by law.5

It is justified to say that the organization-wide notice board is not the source
of the problem, but that the few corrupt police officers are the source of the
problem. If one is interested in addressing the problem of corrupt police of-
ficers, one should of course always tackle the problem at its root: hunt down
and eliminate corrupt officers. It would not be realistic to believe that hunting
down corrupt officers will be a 100% effective. Therefore, some measures have
to be taken to limit the negative impact that corrupt police officers can have.

A first step in limiting the negative impact that corrupt police officers can
have, is to prevent ‘frivolous queries’, that is, to prevent queries for which there
does not exist a need to know. Of course, the need to know is something which is
often hard to operationalize precisely. But even if it is only operationalized in a
rough, simplistic way, such that only obvious violations are detected, it already
limits the impact of corrupt police officers.

A simple operationalization of need to know which dramatically limits the
frivolous queries of the thousands of researchers: only queries are allowed on
names which occur in the electronic dossier the researcher is working on.6

There are also police officers which operate the organization-wide notice
board, and if the information is stored unencrypted on the notice board7 these
operators will still be able to perform frivolous queries at will.

As long as the software that is running the notice board needs access to
unencrypted data, the operators will have a means to access the unencrypted
data. However, when the software that operates the notice board does not
need access to unencrypted data to match electronic dossiers, it is possible to
prevent frivolous access by malicious operators. When protocols for knowledge
authentication are applied, notice boards do not need unencrypted data.

8.1.2 The Passenger Name Record

The best known application area where protocols for knowledge authentication
can help is the airline passenger data (the so-called passenger name record or
PNR). In 2003, in response to the events on 9/11, the United States of America

5 There have been major leaks in the Dutch police organization, as Dutch top-criminals like Mink
Kok have possession of various classified police documents. The police has a hard time identi-
fying the corrupt police officers (various newspaper media, 2006).

6 Such an operationalization has to be enforced by the software which is used to manage the
electronic dossier.

7 Or equivalently: it is stored encrypted, but the operators have access to the decryption key.

104 Chapter 8. Knowledge Authentication

mandated that all airline carriers release the PNR to the Department of Home-
land Security (DHS) for all flights from, to, and over US territory:

The DHS has a ‘terrorist list’ of people they do not wish close to
US territory. When an airplane wants to enter US airspace and it
carries one or more people who are on the ‘terrorist list’, it is re-
fused access.8 Understandably, the DHS does not want to disclose
its terrorist list; such a disclosure would give an unnecessary ad-
vantage to terrorists. Al Qaeda would precisely know which of its
combattants would be granted access to the US, and which not.

The airline carriers, on the other hand, are not automatically in-
clined to release the PNR to the DHS. The information has been
collected for commercial purposes, and not for security purposes.
Release of the PNR would result in infringement on the privacy of
innocent citizens. The European Data Protection Directive forbids
the release of this information. This resulted in a circus of lawsuits
and negotiations.9

Can the airline carriers and the DHS compare their lists of pas-
sengers and suspected terrorists without mutually disclosing their
lists?

This problem is more intricate than the problem of the police investigation
information, because the airline carriers and the DHS are not subsidiaries of
one larger organization. As such, it will be hard — if not impossible — to find
a trusted third party (TTP) to compare their lists. Thus, a ‘notice board solution’
as with the police investigation information is impossible.

Using protocols for knowledge authentication, it is possible to determine the
intersection of two lists, without disclosing the lists themselves10, without the
need for a TTP.

When we look at the need to know of the DHS, we can observe that it is in
fact very limited. What the DHS needs to know is whether there is a suspected
terrorist on board of an airplane. Strictly taken, the DHS does not even need to
know which terrorist is on board. Importantly, the DHS does not need to know
the identities of the passengers that are not suspected terrorists.

Thus, protocols for knowledge authentication can protect the privacy of inno-
cent citizens who fly from, to, or over the US, while the DHS can still perform
its task.11

8 Remarkably, when a airplane is actually refused access, there is no procedure for a concerted
effort to arrest the suspected terrorist. After the airplane lands outside of the US, the suspected
terrorist is free to travel elsewhere.

9 For an extensive treatment of how the European Union and the US settled their dispute on the
PNR, consult [Hei05].

10 Thus, the items which are on both lists are mututally disclosed, but the items which are only on
one of the lists are kept secret.

11 Using protocols for knowledge authentication the identity of suspected terrorists which are on
board of an airplane is disclosed to the airline carrier, and in this sense the terrorist list is not
kept secret. In the current situation in which the full passenger list is disclosed to the DHS, the

8.2. Comparing Information Without Leaking It and Reference 105

8.2 Comparing Information Without Leaking It
and Reference

Protocols for knowledge authentication are for comparing secrets, without dis-
closing the secrets. We need to be more precise on what we consider to be
‘secret’, and what we mean by ‘comparing without disclosing’. We will make
this more precise in this section.

What constitutes a ‘secret’ is relatively simple. A secret of player Q is a
bit string, generated by player Q, which player Q is not willing to disclose to
others. Whether the bit string can be generated by virtually every other agent
does not alter it being a secret of agent Q. Thus, Q may consider ‘Stalin sent
millions of people to Siberia’ to be a secret, while in fact many people know
this. Moreover, whether the bit string corresponds to something which is true
in the ‘outside world’ is irrelevant: for example, someone may ‘know’ (e.g.
believe) the secret ‘there are weapons of mass destruction in Iraq’.

The careful reader has noted that we use the verb ‘to know’ in a loose way.
In epistemic logic, knowledge is at least as strong as true justified belief.12 When
we use the verb ‘to know’, we technically mean ‘possessing information x,
which may be false’. We use ‘to know’ in this way because knowledge is an
intuitive notion for the examples.

What constitutes ‘comparing without disclosing’ is more complicated. We
will focus on comparing information without leaking it (CIWLI) without reference.
What that is, and how it differs from CIWLI with reference, will be explaind in
the remainder of this section. In zero-knowledge protocols, two players play
a game in which the prover (player one) proves to the verifier (player two)
that the prover has some special knowledge. This special knowledge could be
for example knowing a Hamiltonian tour for a graph, or a password to Ali
Baba’s cave. The verifier (player two) does not possess the special knowledge,
nor does he learn it by means of the protocol. Thus, zero-knowledge protocols
are convincing but yield nothing beyond the validity of the assertion proven
(in the example ‘the prover knows a Hamiltonian tour’) [GMR85, Gol02, BG93,
BFM88].13

The type of knowledge that can be proven in zero-knowledge protocols is
limited to knowledge within a mathematical context: the two players in a pro-
tocol know some x a priori, and the prover proves his knowledge of some spe-
cial object y. The object x may be a public key and y the corresponding private
key, or x may be a graph and y the Hamiltonian tour of it, as in the example.
The required mathematical relation between x and y is, speaking loosely, that
it is NP-hard to compute y from x. It might seem that the requirement of a

terrorist list is not kept secret either, as the airline carrier learns that at least one of the passengers
on board is on the list upon being refused access to US airspace. In practice, the DHS currently
discloses the identity of the suspected terrorists voluntarily to the airline carrier.

12 Beliefs in general may be ungrounded and false. Even the definition ‘true justified beliefs’ has
some problems [Get63].

13 For an introduction to Zero-Knowledge protocols, consult Section 2.8.

106 Chapter 8. Knowledge Authentication

specific mathematical relation between x and y somehow restricts the possible
applications of zero-knowledge protocols.

However, it is also possible to create an NP-hard ‘puzzle’ on the fly to prove
knowledge of any y, provided that the verifier also knows y a priori. If the verifier
does not know y a priori, he does not gain any information which helps him to
compute y. In this thesis we present the first efficient zero-knowledge protocols
in which possession of any kind of knowledge can be proven. The knowledge
need not be special in any mathematical or contextual way.14 The assertion ‘the
prover knows y’ can only be verified if the verifier also knows (all of) y. The
verifier never learns anything more than the prover’s knowledge of y, and not
y itself.

This type of protocols has applications where securely comparing secrets
allows transactions which could not be allowed otherwise. Examples are the
comparison of police information (Section 8.1.1) and the exchange of the PNR
(Section 8.1.2)

For example, secret agents might like to test each other’s knowledge with-
out exposing their own. Many examples can be found where privacy require-
ments or non-disclosure requirements are an obstruction for performing righ-
teous tasks.

The type of problem that our protocols solve is similar to, but different from,
the problem described in [FNW96]. We will first give a description which is
broad enough to cover both problems, after which we will describe the differ-
ence.

By a secret, we mean information possessed by an agent, which the agent is
not willing to share with another agent. Whether other agents indeed possess
this information as well is not relevant for it being considered a secret. Here
follows the problem “Comparing Information Without Leaking It” (CIWLI)15:

Two players want to test whether their respective secrets are the
same, but they do not want the other player to learn the secret in
case the secrets do not match.

Not specified yet is which particular secrets are to be compared, and how it
is decided which particular secrets are to be compared. Do the two players each
take a specific secret into their mind which they compare? For example, is ‘the
person I voted for’ equal to ‘the person you voted for’? Or does one player
take a secret ‘The General will attack tomorrow at noon’ and does the other
player see whether he knows this specific secret as well? In the former case,
the two players first have to agree upon what they want to compare. I call this
CIWLI with reference. In the latter case, no a priori agreement is needed and I
call it CIWLI without reference, because of its lack of an agreement which refers
to a secret.
14 The only requirement is that it can be uniquely encoded in a binary string, which can hardly be

considered a limitation.
15 This is a slight variation from [FNW96, page 78], where it reads “Ron and Moshe would like

to determine whether the same person has complained to each of them, but, if there are two
complainers, Ron and Moshe want to give no information to each other about their identities.”

8.2. Comparing Information Without Leaking It and Reference 107

The difference between CIWLI with reference and CIWLI without reference
can be illustrated with the following two secrets:

with reference ‘I voted for Pim Fortuyn’

This could be a secret because it expresses a stance of the player, which
he may want to keep secret for whatever reason. The reason could be
fundamental (like ‘votes should be secret’) or practical (for example to
prevent embarrassment, like admitting one still likes A BBA music).

without reference ‘arkjjhhg bwr ufkng’

This could be a secret because it might be the access code to a Swiss bank
account where someone keeps his fortune.

CIWLI with reference is symmetric in the sense that both players have a
specific secret in mind while performing the protocol, whereas in CIWLI with-
out reference, only one of the players has one specific secret in mind.16

An example of CIWLI with reference is the Socialist Millionaires’ problem,
in which two players want to test their riches for equality, but do not want to
disclose their riches to the other player [JY96, BST01]. Another example is that
two managers each have received a complaint about a sensitive matter, know
this of one another, and would like to compare whether the complainer is the
same person (without contacting the complainer) [FNW96]. Solutions exist for
CIWLI with reference [FNW96, BST01, JY96]. In [FNW96] a series of interesting
applications is listed where protocols solving this problem could be used.

It could also be the case that it is not agreed upon between the agents what
the secret is about, i.e., that the agents have no particular stance towards the
secret as in CIWLI with reference. In that case, we have CIWLI without ref-
erence. For example, Alice could have a file on her hard disk, and would like
to know whether Bob possesses the same file as well. Alice can not naively
show the file to Bob and ask him to search for a matching file, because this
will obviously result in Bob obtaining the file (though Bob could be honor-
able and delete it voluntarily). In cases of CIWLI with reference, it is common
that two specific secrets are tested for equality, whereas in cases without refer-
ence, one specific secret is tested against numerous secrets for equality. The file-
comparison problem would be a case with reference if the two players would
like to know whether two specific files are equal. (‘Are the instructions you got
from Carol the same as the instructions I got from Carol?’)

Though secrets f(X, Y) can be computed using some very complicated pro-
tocol, what will be the input X (resp. Y) remains under the control of Alice
(resp. Bob). This has been acknowledged already in [Yao82, page 162]:

16 In the field of dymanic epistemic logic, there are riddles about card deals, such as Van Dit-
marsch’s Russian cards problem [vD03]. It may need notice that CIWLI problems are very
different from such card deal problems. Firstly, in CIWLI the number of ‘cards’ is unlimited (or
at least extremely high), and it is not publicly known which ‘cards’ exist. Secondly, in CIWLI
there is no such thing as exclusive possession of a ‘card’.

108 Chapter 8. Knowledge Authentication

“Since a protocol can never prohibit Alice (or Bob) from behaving
as if she had a different variable value X ′ (or Y ′)17, the most that a
protocol can achieve is to make sure that this is the only cheating
that Alice (or Bob) can do.”

In particular, a principal can always refuse to prove possession of some item,
while he or she actually possesses the item. The best a protocol can achieve, is
to prevent the opposite: it ensures that a principal cannot ‘prove’ possession of
an item he does not have.

For CIWLI with reference, this is a larger problem than for CIWLI without
reference. In CIWLI with reference, there is no guarantee that the input of a
player is truthful (e.g., that the player did vote for Pim Fortuyn, or does like
ABBA music). In CIWLI with reference, a commitment is required of both par-
ties that their inputs to the protocol satisfy the reference, i.e., they are truthful.
(For example, in the socialist millionaires’ problem this means that the inputs
correspond to the wealth of the players.) In fact, these protocols can only be
used to test whether the two inputs are equal, and only assuming truthfulness
one can say something about, for example, the riches of the players.

In CIWLI without reference, a successfully proven secret is truthful, because
the ‘truth’ that is proven is the fact that the player can construct the secret (e.g.,
the access code to the Swiss bank account). However, a player can always fake
not possessing a certain file, while he actually does possess the file. A player
can however never fake possessing something which he does not possess (or
only with negligible probability).

In this thesis, we focus on protocols for CIWLI without reference.

8.3 Adversary Models for CIWLI

In CIWLI with reference, it is required that player A cannot infer anything on
the input of player B, in case their inputs do not match. This includes that it
should not be possible for player A to test the input of player B for likely val-
ues, that is to guess and verify whether the guess is correct. This is called se-
mantic security [Yao82, Yao86]18. Semantic security is important in CIWLI with
reference, because what is tested is not whether the other player can imagine
or guess some input [WSI03], but whether he actually states the input. Thus,
cases with reference should withstand guessing attacks (also called dictionary
attacks, see Section 2.1).

In case of CIWLI without reference, there is no need to withstand guessing
attacks of the players. Basically this is because cases without reference test
whether the other player possesses a specific file, which is roughly equivalent
to being able to imagine or guess it within the limits of its storage capacity and
computational resources. In fact, the protocols we present in the next chapters

17 In [Yao82], it says “i′” instead of “X′ (or Y ′)” — WT
18 Informally, an encryption scheme is semantically secure, if ciphertexts leak no information

about the plaintext.

8.4. Possible Set Relations 109

are based on the fact that a player can verify the other player’s knowledge of a
file by correctly ‘guessing’ it. Semantic security is still required in the sense that
if a player cannot guess the complete input of the other player, he should not be
able to infer anything of the input of the other player. And, of course, there
must be full semantic security with respect to eavesdroppers, third persons
other than the two players.

Given these considerations, what adversary models can best be applied?19

In the honest-but-curious adversary model, the principals are supposed to adhere
to protocol specification. Thus, it is assumed that in this model, the principals
do not try to convince other players of possession of items which they in fact
do not possess. They are only secure under the assumption of no cheating. To
let go of this assumption, one has to adopt the malicious adversary model.

In the rest of this chapter and thesis, we will adopt the malicious adversary
model.

8.4 Possible Set Relations

Algorithms for the distributed computation of set relations are tricky. For one
thing, different algorithms may seem to compute the same thing, but in fact
compute something different. Thus, before listing known algorithms, which
we will do in the next section, it should be explained which interesting proper-
ties can be computed given two finite sets. In this section, we will explain what
set relations we distinguish. All sets we consider are finite.

It is easy to characterize the possible relations between two subsets of a
given domain Ω. As a reminder, two sets (each a subset of Ω) can either be:

disjoint, there is no single item that is in both sets,

partially intersecting, at least one item is found in both sets and at least one
item is found in only one of the sets, or

equal, any item found in one set is also found in the other set.

The possible relations between to sets are depicted in Figure 8.1. Note that,
if X = Y = ∅, the sets are both disjoint and equal. Otherwise, the relations are
mutually exclusive. For example, if one determines that A and B are not equal,
one can be sure that A and B are either disjoint or partially intersecting.20

When describing the relation between two sets, partially intersecting de-
serves some extra attention: depending on the application domain, it may or
may not be required to spell out what elements constitute the partial inter-
section. To determine what elements constitute the intersection requires more
computation than to determine whether the intersection is empty or not. To

19 For an introduction to adversary models, see Section 2.6.
20 For a discussion of possible set relations when one also takes the domain of possible items (e.g.

the universe) into account, consult [KM06].

110 Chapter 8. Knowledge Authentication

&%
'$

�
�

�
��

�
�
�

�
�

�

�
�

�

�
�

�

�
�
�

�
���
�

&%
'$

@
@

@
@@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@
@

@@ @
@

X Y

X ∩ Y = ∅
disjoint

&%
'$

�
�

�
��

�
�
�

�
�

�

�
�

�

�
�

�

�
�
�

�
���
�

&%
'$

@
@

@
@@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@
@

@@ @
@

X Y

X ∩ Y 6= ∅, X 6= Y

partially intersect

&%
'$

�
�

�
��

�
�
�

�
�

�

�
�

�

�
�

�

�
�
�

�
���
�

&%
'$

@
@

@
@@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@
@

@@ @
@

X, Y

X = Y

equal

FIGURE 8.1: The relations possible between two sets X and Y .

disjointness Are X and Y disjoint? The answer is either a yes (1) or a no (0).

fdisj :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) → {0, 1} with fdisj(X, Y) = [X ∩ Y = ∅]

intersection Which items are in both X and Y ? The answer is a set.

fint :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) →

<∞
P ({0, 1}∗) with fint(X, Y) = X ∩ Y

intersection cardinality How many items are in both X and Y ? The answer is
a number.

fic :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) → N0 with fic(X, Y) = |X ∩ Y |

equality Are X and Y identical? The answer is either a yes (1) or a no (0).

feq :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) → {0, 1} with feq(X, Y) = [X = Y]

subset inclusion Is X a subset of Y ? The answer is either a yes (1) or a no (0).

fsi :
<∞
P ({0, 1}∗) ×

<∞
P ({0, 1}∗) → {0, 1} with fsi(X, Y) = [X ⊆ Y]

This is the only relation that does not commute: fsi(X, Y) 6⇔ fsi(Y,X).

FIGURE 8.2: Some interesting set functions for which secure protocols exist.

• Items of sets (the ‘secrets’) are represented as bit strings.
• The set of all possible finite bit strings is represented as {0, 1}∗.
• The finite power set (the set of all finite possible subsets) is denoted as

<∞
P .

• The set of non-negative integers is denoted as N0.
• The cardinality of a set X is denoted as |X|.
• The extension of a set X is denoted as [X].
• If X is a condition, then [X] = 1 if X holds, and [X] = 0 otherwise.

8.4. Possible Set Relations 111

0-to-any At least one set is empty, say X = ∅. This case is not really interesting.
In this case, for any Y , we have

fdisj(X, Y) = 1, fint(X, Y) = ∅, fic(X, Y) = 0, fsi(X, Y) = 1
and feq(X, Y) = [Y = ∅]

1-to-1 Both sets contain only one element. In this case the sets are either dis-
joint, or equal. In this case, we have

fdisj(X, Y) = 0 ⇔ fint(X, Y) = X ⇔ fint(X, Y) = Y

⇔ fic(X, Y) = 1 ⇔ feq(X, Y) = 1 ⇔ fsi(X, Y) = 1

1-to-many One of the sets contains only one element, say X = {M}, and the
other set Y contains more than one element. In this case Y can be disjoint
with X , or partially intersecting. In this case, we have

fdisj(X, Y) = 0 ⇔ fint(X, Y) = X

⇔ fic(X, Y) = 1 ⇔ fsi(X, Y) = 1

many-to-many Both sets contain more than one element. This case is not really
special in the sense that there are not too many correspondences between
the set relations. In this case, we only have

fdisj(X, Y) = 0 ⇔ fint(X, Y) 6= ∅ ⇔ fic(X, Y) > 0

FIGURE 8.3: Special cases of the sizes of two sets.

encode what elements constitute the intersection also requires more bits than
to encode whether the intersection is empty or not.

Now, if one is given two finite sets X and Y , what kind of questions could
one be interested to ask? In Figure 8.2, we list the most useful questions for
which algorithms have been designed, with their formal definition. Without
loss of generality, we assume that an item is modeled as a bit string in {0, 1}∗,
which contains all finite strings21, including the empty string.

In this thesis, we will focus mainly on the intersection question. For more
details on intersection cardinality, consult [FNP04, KS04]. For more details on
subset inclusion, consult [LLM05, KM06]. In [KS04], protocols are described
which determine set relation properties which are only relevant if more than
two sets are involved. For the ease of comparison and discussion, we will only
address the case where the number of sets to be compared is two.22

21 Thus, the interpretation of {0, 1}∗ is that the pattern {0, 1} may be repeated any finite number
of times, but not infinitely many times.

22 For example, in [KS04] threshold intersection cardinality is defined as the function that determines
the set of items that each occur in more than n of the m sets, with n > 2 and m > 2.

112 Chapter 8. Knowledge Authentication

Depending on the sizes of the sets X and Y , four cases can be distinguished.
For some of these cases, the definitions of some of the questions above can
be simplified, and can become the dual of one of the other definitions. Also,
algorithms could be tailor-made for one of these special cases. The first case,
in which one set is empty, is only included for completeness. All four cases are
shown in Figure 8.3.

Clearly, the many-to-many case is the most general one. The most specific
but still interesting case is 1-to-1. For the 1-to-1 case, the questions that can be
asked are interchangeable.

An algorithm for the many-to-many case can be constructed by multiple
runs of a 1-to-many algorithm, and an algorithm for the 1-to-many case can be
constructed by multiple runs of a 1-to-1 algorithm. Usually, these are not the
most efficient solutions. In Chapter 10 we show how we efficiently transform
a protocol for the 1-to-many case into a protocol for the many-to-many case.

The many-to-many case is also called the list intersection problem [NP99]. A
solution for the many-to-many case will make it possible to create indexes on
distributed, secured databases, which can be searched without leaking infor-
mation on the contents of the databases.23

8.5 Secure Protocols for Computing Set Relations

It is not very difficult to create an algorithm that computes the answer to any
single question of Figure 8.2. Also, if X is only known to one principal (Alice),
and Y is only known to the other principal (Bob), protocols answering these
questions are easy to construct. But it is diffucult to construct protocols which
compute the answers to these questions in a secure manner. In this section, we
will give an overview of existing protocols for secure computation of the set
relations. First, we will explain and discuss the properties that these protocols
satisfy. Then, Table 8.1 lists all known, published protocols.

The protocols listed in Table 8.1 satisfy the following properties:24

privacy the inputs X and Y are not mutually disclosed;

validity it is impossible for the principals to cheat without the other player
detecting this;

autarky the principals do not need assistance of a third party; and

efficiency for some set sizes |X| and |Y | the solution is efficient.25

23 This is similar to, but with wider application areas than the approaches in [FLW91, FGR92].
24 The properties privacy, validity and autarky listed here are described in more detail in Sec-

tion 2.7.
25 It would be better if all protocols are efficient for all set sizes |X| and |Y |, but this is not the case.

For some set sizes, some protocols are not even feasible. For an introduction to complexity,
consult Section 2.3.

8.5. Secure Protocols for Computing Set Relations 113

The properties privacy and validity are not easily combined with the prop-
erties autarky and efficiency. Observe that if autarky and efficiency would be
dropped as requirements, there would be a trivial protocol involving a trusted
third party (a TTP): both Alice and Bob privately disclose their inputs X and Y
to the TTP, the TTP computes f(X, Y), and informs Alice and Bob.

The privacy property is tricky in particular with respect to the set sizes of the
inputs (i.e., |X| and |Y |). It is easy to see that if both X and Y contain many
elements, the amount of computation and comparisons required is much larger
than if X and Y contain only a few elements. If it is required that |X| and |Y |
are not disclosed, it cannot be allowed to design the protocol in such a way
that it will take advantage of |X| and |Y | to optimize the communication and
computational complexity: a protocol run would leak |X| and |Y | or at least
some stochastic information on |X| and |Y |. A protocol that does not disclose
|X| and |Y | is essentially a protocol that adds dummy elements to X and Y
(obtaining X ′ and Y ′) such that |X ′| = c and |Y ′| = c for some commonly
agreed upper bound c. Such a protocol only works for sets with at most c
elements, and ‘discloses’ that |X| ≤ c and that |Y | ≤ c. Using such a protocol,
with c = 4·106, comparing two sets each of size 4 is just as expensive as two sets
each of size 4 million. Thus, nondisclosure of |X| and |Y | implies a tremendous
efficiency penalty.26

Protocols satisfying the properties listed in the beginning of this section
are closely related to secure multiparty computation (SMC). In addition, a pro-
tocol for SMC also has to satisfy the fairness property. That is, both principals
learn the outcome of f(X, Y), and they cannot deny the other the outcome of
f(X, Y) without denying it oneself. The BST protocol (listed in Table 8.1) can
be transformed into a fair protocol [BST01].

There is also a close relation to zero-knowledge proofs. If either the set sizes
are a priori known to both participants, or the protocols do not leak the set
sizes, the protocols can be considered zero-knowledge proofs.

Normally, in zero-knowledge proofs, it is tacitly assumed that the prover is
convinced of the truth of the assertion he tries to prove. There is conceptually
nothing wrong with trying to prove an assertion of which one does not know
the truth value. Proving that ‘I know what you know’ is a very good example
of this: the prover may not know the knowledge of the opponent, but can
nevertheless engage in a protocol. Whether the run of this protocol yields a
convincing proof depends on the knowledge of the verifier. Moreover, it is
not necessary that the knowledge of the verifier is known to the prover, of
course. Also, after running the protocol, the prover does not know whether
the assertion proven was in fact true, or whether the proof was convincing. In
[JY96], Jakobsson and Yung have introduced the concept of an oblivious prover
which applies well to this situation. An oblivious prover is a prover who does
not know the truth value of the assertion he tries to prove.

Now that the most important properties have been described, we are ready

26 This has also been observed in [KM05]. Moreover, [BCC88, page 157] contains a hint to this
matter: “However, Vic is not given a clue [. . .] (except perhaps for an upper limit on its length).”

114 Chapter 8. Knowledge Authentication

nam
e

reference
case

com
putes

adversary
m

odel
com

m
unication

com
plexity

dom
ain

com
pression

FN
W

27
[FN

W
96]

1-to-1
equality

28
various

various
no

JY
[JY

96]
1-to-1

equality
28

m
alicious

ln
|Ω
|

no
BST

[BST
01]

1-to-1
equality

28
m

alicious
ln
|Ω
|

no
N

P-1
[N

P99]
1-to-m

any
intersection

29
m

alicious
|Y
|·ln

|Ω
|

no
T-1

C
hapter

9
1-to-m

any
intersection

29
m

alicious
1

yes
K

M
-1

30
[K

M
05]

any
disjointness

honest-but-curious 31
|Ω
|·ln

|Ω
|

no
K

M
-2

30
[K

M
05] 32

any
disjointness

honest-but-curious 31
|X
|·|Y

|·ln
|Ω
|

no
K

M
-3

30
[K

M
05] 32

any
disjointness

honest-but-curious 31
(|X

|+
|Y
|

|Y
|)·ln

|Ω
|

no
K

M
-4

[K
M

06]
any

disjointness
honest-but-curious 31

(|Ω
|−

|X
|)·ln

|Ω
|

no
N

P-2
[N

P99]
any

intersection
m

alicious
(|X

|+
|Y
|)·ln

|Ω
|

no
A

gES-1
33

[A
ES03]

any
intersection

honest-but-curious
|X
|+

|Y
|

yes
FN

P-1
[FN

P04]
any

intersection
honest-but-curious

|X
|·ln

|Ω
|

no
FN

P-2
[FN

P04]
any

intersection
m

alicious
unclear

no
K

S-1
[K

S04]
any

intersection
honest-but-curious

|X
|·ln

|Ω
|

no
K

S-2
[K

S04]
any

intersection
m

alicious
|X
| 2·ln

|Ω
|

no
T-2

C
hapter

10
any

intersection
m

alicious
|X
|+

|Y
|

yes
A

gES-2
33

[A
ES03]

any
intersection

cardinality
honest-but-curious

|X
|+

|Y
|

yes
FN

P-3
[FN

P04]
any

intersection
cardinality

honest-but-curious
|X
|·ln

|Ω
|

no
K

S-3
[K

S04]
any

intersection
cardinality

m
alicious

|X
|·ln

|Ω
|

no
K

M
-5

[K
M

06]
any

subsetinclusion
honest-but-curious 31

|X
|·|Y

|·ln
|Ω
|

no
K

M
-6

[K
M

06]
any

subsetinclusion
honest-but-curious 31

(|Ω
|−

|X
|)·ln

|Ω
|

no
LLM

[LLM
05]

any
subsetinclusion

m
alicious

|Ω
|·ln

|Ω
|

no

T
A

B
L

E
8.1:A

llknow
n

w
ell-docum

ented
secure

protocols
for

com
puting

the
setrelations

given
in

Figure
8.2

(page
110).

8.5. Secure Protocols for Computing Set Relations 115

to present the full list of protocols which securely compute set relations. It is
given in Table 8.1. The following remarks may help to read the table:

• The protocols have been named after the authors of the papers in which
they have been presented. Where necessary, protocols have been num-
bered to distinguish different protocols from the same set of authors.

• The column case gives the set sizes for which the protocol has been de-
signed (see Figure 8.3). ‘Any’ implies any combination of set sizes, and
therefore includes the many-to-many case.

• Because the properties privacy and validity can only be assessed with re-
spect to some chosen adversary model, the adversary model is explicitly
stated for each protocol.

• In the columns describing the complexity, X and Y denote the sets of
Alice and Bob. The domain of all possible set items (the ‘universe’) is
denoted Ω. The cardinality of a set Z is denoted as |Z|. The logarithm
base 2 is denoted ln. For many protocols, the communication complex-
ity also depends on a constant factor k, a security parameter k. It has
been omitted for ease of reading. Other constant factors have also been
omitted.

• The column domain compression states whether in the protocol the items
of the sets are abbreviated or not. This will be addressed further in Sec-
tion 8.6.

As can be seen in Table 8.1, a lot of research has recently gone into the
subject matter of secure protocols for computing set relations. Omitted from
the table are protocols for which it is unclear what their security properties are
[DQB95, QBA+98a, QBA+98b, QAD00, Ber04, CC04]34. Also omitted from the
list are ‘protocols’ which for their security actually rely on another protocol
for computing set relations, such as [RCF04]. Another interesting algorithm is
the set comparison algorithm of Wegman and Carter [WC81], which can easily

27 FNW is only listed for completeness. In [FNW96], a total of thirteen protocols is described, some
of which are only secure in the honest adversary model. Some of the protocols require physical
presence or special purpose devices. None of the protocols simultaneously satisfies the privacy,
validity and autarky properties. It is a valuable and enjoyable read nevertheless.

28 In the 1-to-1 case, all interesting set relations are equivalent (see Figure 8.3). In our opinion,
equality is the term which fits best here.

29 In the 1-to-many case, all interesting set relations but equality are equivalent (see Figure 8.3). In
our opinion, intersection is the term which fits best here.

30 The protocols KM-1 through KM-3 are called PIPE #1 through PIPE #3 in [KM05].
32 The protocols KM-2 and KM-3 are also documented in [KM06].
31 In [KM05, KM06], it is claimed that protocols KM-1 through KM-6 can be transformed into

protocols which are secure in the malicious adversary model. The proofs of these claims have
not been published, nor were they available upon request.

33 To avoid confusion with the encryption standard AES, the protocols from [AES03] have
been named AgES-n. The AgES-n protocols have been somewhat modified and extended in
[OYGB04], where essentially a trusted third party (TTP) is introduced.

34 For a discussion of these articles, see Appendix C.1

116 Chapter 8. Knowledge Authentication

name reference case
communication

complexity
domain

compression
JY [JY96] 1-to-1 ln |Ω| no
BST [BST01] 1-to-1 ln |Ω| no
NP-1 [NP99] 1-to-many |Y | · ln |Ω| no
KS-3 [KS04] 1-to-many ln |Ω| no
T-1 Chapter 9 1-to-many 1 yes
NP-2 [NP99] any (|X|+ |Y |) · ln |Ω| no
FNP-2 [FNP04] any unclear no
KS-2 [KS04] any |X|2 · ln |Ω| no
T-2 Chapter 10 any |X|+ |Y | yes
LLM [LLM05] any |Ω| · ln |Ω| no

TABLE 8.2: Protocols which can be used for knowledge authentication This
Table is a strict subset of Table 8.1, except for the KS-3 protocol, which has
been restricted to the 1-to-many case (in which case intersection cardinality is
equivalent to subset inclusion, see Figure 8.3).

be transformed into a protocol in the many-to-many case for computing set
equality with communication complexity 1 (!). This algorithm does not belong
in the table because it assumes honest principals.

All protocols which are suitable for the ‘any’ case leak some information on
the sizes of the sets. For the 1-to-many case, the NP-1 protocol leaks the size
of the bigger set, while our T-1 protocol does not. For the 1-to-1 case, the mere
running of the protocol leaks that the set sizes are both equal to one, but this is
rather dull information and can hardly be considered ‘leaking information’.

A large number of the protocols in Table 8.1 is proven secure in the honest-
but-curious adversary model (see Section 2.6). It is important to appreciate what
this precisely means. In the honest-but-curious adversary model, the principals
are supposed to adhere to protocol specification. Thus, it is assumed that in
this model, the principals do not try to convince other players of possession of
items which they in fact do not possess. Therefore, protocols which compute
the intersection (subset inclusion, equality) problem should definitely not be
considered as protocols which prove possession of set items. They are only
secure under the assumption of no cheating (as discussed also in Section 8.3).

Protocols for computing intersection (subset inclusion, equality) which are
secure in the malicious adversary model can be considered a proof of possession.
These protocols and their main properties are summarized in Table 8.2.

8.6 Domain Compression

As can be seen in Tables 8.1 and 8.2, the communication complexities of the
various protocols differ significantly. It is striking that almost all protocols have

8.6. Domain Compression 117

a factor ln |Ω| in the complexity. The reason for this factor is rather simple: these
protocols communicate the set items in encrypted form. If the set of items is
restricted to things like secret keys, which are typically a few thousand bits
long (say, 4096 bits), the domain size is |Ω| = 24096. In that case ln |Ω| = 4096
bits, which is half a kilobyte35. With the current cost of computing power and
communication bandwidth, this is by no means a prohibitive figure.

If on the other hand the set of items is not restricted to secret keys, but is
extended to include binary files (say, up to sixteen megabyte), the domain size
is |Ω| = 2232

, and ln |Ω| = 232, which is sixteen megabyte. If 232 is only a factor in
the communication complexity, the feasibility of such a protocol for a domain
of such size is questionable at least.

To communicate sixteen megabyte of information only to identify a single
file may seem absurd, but it is necessary if communicating less information
would lead to unacceptably many identification errors. When we have a set
Φ (Ω, a constant c, |Φ| < 2c|Ω|, and Φ has a uniform distribution (for any sub-
set of Ω), one can uniquely identify an element x ∈ Φ with an error probability
ε of ε = 2−c by communicating only c + ln |Φ| bits.

Thus, the domain size |Ω| does not impose a lower bound on the commu-
nication complexity, but |Φ|, the size of the of the domain that is actually used.
To obtain a lower communication complexity, we have to compress the domain
Ω onto the smaller domain Φ, hence domain compression36. We need a function
which provides the mapping H : Ω → Φ, where the output has a uniform dis-
tribution.

A protocol that uses domain compression does not operate directly on two
sets X and Y , but on two sets X ′ and Y ′ which are constructed by application
of the mapping H to the sets. (Thus X ′ = {H(x)|x ∈ X} and Y ′ = {H(y)|y ∈
Y }.)

The logical choice for a function that provides the compression, is a crypto-
graphic hash function.37 The output of a cryptographic hash function is indis-
tinguishable from a uniform distribution. The output of a cryptographic hash
function has a fixed length l, which is typically a few hundred for current hash
functions38, yielding a domain Φ with |Φ| = 2l. Such domain sizes for Φ are
sufficiently large.

All in all, the domain Ω is compressed to a smaller domain Φ. When this
is done using a cryptographic hash function, the hash values (∈ Φ) can be
considered ‘abbreviations’ of the original set items (∈ Ω).

When it comes to computing set relations, where the items of the sets stem
from a large or huge domain Ω, one can observe that for fixed sets of secrets
X and Y , the larger a domain Ω, the sparser the sets will be. More specifically,

35 Where we write ln, this is a shorthand for for log2, the logarithm with base 2.
36 Though tempting, we refrain from using the term ‘compression function’, as this term also

has a specific meaning in the Merkle-Damgård paradigm, which applies to cryptographic hash
functions.

37 For an extensive introduction to cryptographic hash functions, see Chapter 3.
38 The hash function with the longest hash values known to date is SHA-512, which produces hash

values of 512 bits long.

118 Chapter 8. Knowledge Authentication

one can observe that

lim
|Ω|→∞

|X| · |Y |
|Ω|

= 0

which makes it abundantly clear that exploitation in the protocols of the spar-
sity of the sets will improve the communication complexity. The protocols
which do exploit this sparsity have a ‘yes’ in the column ‘domain compres-
sion’ of Table 8.1 (they are: T-1, T-2, AgES-1 and AgES-2).39

The instrument that these protocols use in order to exploit the sparsity is
a cryptographic hash function. Instead of communicating encrypted forms of
the set items, the encrypted form of the hash value of the set items is commu-
nicated.

The use of domain compression has subtle but important implications for
the privacy property of a protocol. First, let us repeat the definition of this prop-
erty from Section 2.7. Suppose there are two principals, Alice who possesses X
and Bob who possesses Y .

privacy The inputs X and Y are not mutually disclosed: Alice does not learn
anything about Y except f(X, Y), and Bob does not learn anything about
X except f(X, Y).

Domain compression implies that the privacy property of a protocol is re-
laxed. It remains the case that X and Y are not ‘mutually disclosed’, but in a
weaker sense:

privacy′ The inputs X and Y are not mutually disclosed: for every item y ∈ Y
it holds that if Alice does not know y before the protocol, she does not
know y after the protocol. Similarly for Bob: for every item x ∈ X it
holds that if Bob does not know x before the protocol, he does not know
x after the protocol.

In the latter definition (of privacy′), it is not considered a violation of privacy
if a principal can successfully mount a dictionary attack on the set of the other
principal. In the former definition (of privacy), a successful dictionary attack is
considered a problem.

Both definitions speak of ‘nondisclosure’, but this non-disclosure does not
apply to exactly the same concepts. The difference between privacy and pri-
vacy′ can also be explained using the distinction between the following two
concepts:

the item itself the bit string which may be an element of X and/or Y

knowledge of the item the fact whether the item itself is part of the knowl-
edge of Alice and/or Bob.

39 In the context of sparse sets, it is appropriate to clarify an often misinterpreted result by
Kalyanasundaram, Schnitger and Razborov [KS92, Raz92]. As it would distract too much from
the ‘story line’ of this chapter, it is clarified in Appendix C.2.

8.7. Conclusion 119

In privacy, nondisclosure applies to both the item itself and the knowledge of
the item. In privacy′, nondisclosure applies only to the item itself, and not to
the knowledge thereof. The fact that in the definition of privacy′, nondisclo-
sure does not apply to the knowledge of the item, does not mean that one can
assume knowledge of the item is always disclosed. It means merely that in
privacy′, knowledge of an item may be disclosed.

8.7 Conclusion

Gossiping without disclosing secrets has application in small social settings,
but more importantly also in the comparison of police information (Section
8.1.1) and the exchange of the airline passenger data (Section 8.1.2).

Protocols for knowledge authentication are protocols that allow a player to
prove possession of a secret to someone who also knows the secret, without
disclosing the secret itself.

There are a number of variations of the problem, depending on the follow-
ing properties:

• Does ‘secret’ mean that it is difficult to guess the string that represents
secret (as with the string ‘arkjjhhg bwr ufkng’), or does it mean that the
player has attributed some stance to a commonly known string? (as with
‘I voted for Pim Fortuyn’). We call the former CIWLI without reference, and
the latter CIWLI with reference (see Section 8.2).

• How untrustful and untrustworthy are the players? (i.e., what adversary
model is appropriate? see Section 8.3.)

• How many secrets need to be compared? Just one secret against one other
secret (1-to-1), one secret against many other secrets (1-to-many), or many
secrets against many secrets (many-to-many)? (see Section 8.4.)

• How many possible secrets exist? (i.e., what is the domain size |Ω|?)
How many actual secrets may exist? (i.e., what is the domain size |Φ|?)
(see Section 8.6)

There are many protocols which compute set relations in some secure man-
ner (see Section 8.5, Table 8.1), but only a few of these protocols are suitable for
knowledge authentication (see Table 8.2).

In the next two chapters, we will present our T-1 protocol for the 1-to-many
case (Chapter 9) and our T-2 protocol for the many-to-many case (Chapter 10) .
These are protocols secure in the malicious adversary model, for CIWLI with-
out reference. These protocols use cryptographic hash functions in order to
optimize the communication complexity.

Part IV

Protocols

121

Chapter 9

The T-1 protocol, our solution for 1-to-many
knowledge authentication, is presented. It uses

cryptographic hash functions to ‘point at’ secrets,
and to prove possession of secrets. The T-1

protocol is proven secure in our extended version
of GNY logic.

1-to-many Protocols
(T-1)

In the previous chapter, the problem of ‘comparing information without leak-
ing it’ has been extensively explained. In this chapter, we will present our T-1
protocol1, which is the most efficient solution for the 1-to-many case. That is
the case where one principal has only one secret in mind, and the other player
any number of secrets. In the latter part of this chapter, we will prove the
T-1 protocol correct using an extended version of GNY logic. The aims and
requirements of the T-1 protocol can be illustrated with the following story:

Victor is a secret agent, and keeping secret his intelligence has a
high priority. However, his mission is to protect Peggy from great
dangers, so when needed, protecting Peggy takes priority over
keeping his information secret. Now he is confronted with the fol-
lowing situation: Victor does not know whether certain informa-
tion I known to him, is also known to Peggy. (‘Peggy is kindly
invited for a dinner at the Mallory’s place.’)2 Victor knows that
Mallory is a very malicious person. If Peggy does know that she is
kindly invited, Victor would like to send her a warning message
(‘Don’t go there, it is a trap. You will get killed in case you go
there.’). However, if Peggy has somehow not received the invita-
tion I , Victor would like to keep his warning for himself, as well as
his knowledge of Peggy’s invitation. Therefore, Victor asks Peggy

1 The name of the protocol stems from naming convention in Table 8.1: the author of the protocol
(Teepe) and a number to distinguish it from other protocols by the same author.

2 For clarity, this information could be possession of a computer file stating the invitation. This
sets apart the matter whether the information is truthful.

123

124 Chapter 9. 1-to-many Protocols (T-1)

to prove her knowledge of the invitation. Only after the proof, Vic-
tor will disclose his warning to Peggy. In the protocol, Peggy does
not learn whether Victor actually knew about the invitation, other
than from his possible next actions, such as sending a warning.

Peggy is willing to prove her knowledge of the invitation I , but
only if she can make sure that Victor does not cheat on her, by ac-
tually finding out about the invitation because he tricks her into
telling him that she has been invited. That is, she only wants to
prove her knowledge of the invitation if Victor actually knew about
the invitation beforehand.

Actually, this description only describes the first one of three possible con-
figurations of the T-1 protocol:

1. The verifier initiates (‘can you prove to me that you know I?’)

2. The prover initiates (‘I’ll show you that I know I!’)

3. Mutual proof: both players simultaneously prove to one another that
they possess I .

A situation where such mutual verification could be used in real life is ‘cau-
tious gossip’, such as gossiping about the Geertje’s pregnancy (explained in the
opening of the previous chapter).

In this chapter we will mainly focus on configuration 1, though we stress
that the proof for configuration 1 can easily be modified to prove the protocols
for the other cases.

From here on we will call pieces of information ‘information blocks’, or IBs
for short. Here follows a somewhat more formal description of the story:

Peggy has a certain IB I . If and only if Victor also possesses this
IB I , she wants to prove her possession of it to Victor upon his re-
quest. Furthermore, Peggy need not know whether Victor indeed
possesses IB I , in order to execute the protocol safely.

Thus, if Victor has the same IB, he can verify that Peggy indeed has it, but
if Victor does not have the same IB, he does not learn anything.

9.1 Prerequisites

The T-1 family of protocols relies on some assumptions and uses some cryp-
tographic primitives. Furthermore, we use some terminology in the protocol
and its analysis. These prerequisites will be explained in this section.

The basic assumptions are that the communication channel cannot be mod-
ified by an adversary, and that it is authenticated. That is, the principals in
the protocol know with whom they are communicating. Their communication

9.1. Prerequisites 125

message meaning
ask(h1) A principal asks the other player to look whether he knows

a file which has the hash value h1.
halt A principal stops proving and/or verifying possession.
challenge(C) A principal asks the other player to prove possession of a

file, using the challenge C.
prove(h2) A principal proves possession of a file, by presenting the

hash value h2.

TABLE 9.1: Basic messages used in the T-1 protocol.

may be overheard, but not modified. To obtain such a communication channel,
standard cryptographic techniques can be used, such as asymmetric cryptog-
raphy.

The most important cryptographic primitive used is the non-incremental
cryptographic hash function H(·), which has been explained extensively in
Chapter 3. This function H(·) is publicly known and available to all proto-
col particupants and malicious parties alike. The most important properties of
a non-incremental cryptographic hash function H(·) are:

• that it is easy to compute;

• that its inverse is not easy to compute: given H(I), it is infeasible to infer
any property of I ; and

• that it is impossible to compute H(I) from other inputs than I itself (I
has to be present to compute H(I)).

In particular, for the non-incremental cryptographic hash function the random
oracle model is used (see Section 3.3), which is roughly the assumption that the
output of H(·) is indistinguishable from random noise.

This primitive is sufficient for the protocols, but it is possible to improve
the computational complexity of the protocol if also some form of encryption
is used (see Section 9.3). For our purposes, it does not really matter whether the
encryption is symmetric or asymmetric, but where we are required to choose,
we will choose asymmetric encryption. (Remember that it is not unlikely that
asymmetric cryptography is used already to maintain the authenticity of the
communication channel.)

In the protocols of the T-1 family, a number of basic messages is used. These
basic messages are listed in Table 9.1. In these basic messages, the values h1, h2

and C occur. The first two are hash values, the latter is a piece of information
with the sole purpose to be unpredictable to anybody but the sender of the
message.

As explained in the introduction of this chapter, three configurations for
the protocol exist. Two configurations are asymmetric in the sense that one

126 Chapter 9. 1-to-many Protocols (T-1)

principal is only a prover, and the other principal is only a verifier.3 In these
configurations, we will refer to the principals with the names Peggy (P) for the
Prover and Victor (V) for the Verifier. In the third configuration, both princi-
pals take both roles. In that configuration, we refer to the principals with the
names Alice (A) and Bob (B). When we refer to a principal which could be any
of the principals P , V , A or B, we use the name Q.

The abbreviations P , V , A and B are unique representations of the respec-
tive identities, such as a full name and birth date, or something like a passport
number. An information block (IB) can be represented as a unique bit string I .
The collection of IBs that a principal Q possesses is denoted KBQ (thus, KBP

for Peggy, and so on).
In the ‘simple’ versions of the T-1 protocol, those that do not depend upon

encryption, it is assumed that the two principals have agreed upon a com-
monly known secret nonce N beforehand. Here, a nonce is a piece of informa-
tion with the sole purpose to be unpredictable to anybody but the participating
principals. The nonce N functions as a secret key shared between the partici-
pating principals.4 The set IQ? is the set of IBs I in possession of principal Q,
for which H(IQ, N) is equal to h1. Thus, IQ? = {IQ ∈ KBQ|H(IQ, N) = h1}.

In the ‘elaborate’ versions of the T-1 protocol, those that do depend upon
encryption, it is assumed that the principals have set up encryption keys in
such a way that the initiator of the protocol can send messages in such a way
that only the not-initiating (but participating) principal can read these mes-
sages. The opposite is not required: the non-initiating principal need not be
capable of sending encrypted messages to the initiating principal. The set IQ?
is the set of IBs I in possession of principal Q, for which H(IQ) is equal to h1.
Thus, IQ? = {IQ ∈ KBQ|H(IQ) = h1}.

Now that the basic prerequisites are explained, we can introduce the ‘sim-
ple’ versions of the T-1 protocol in which no encryption is used.

9.2 Protocol Description (Simple, no Encryption)

There are three configurations of the T-1 protocol, as mentioned in the intro-
duction of this chapter. Of these three configurations we will first show the
‘simple’ version, that is the version that does not depend upon encryption.
These protocols are shown in Figures 9.1 (the verifier initiates), 9.2 (the prover
initiates), and 9.3 (mutual proof).

A crucial step in the protocol is the computation of the set IQ?. By com-
puting this set, a principal ‘interprets’ the other principal’s ask(h1) message.
The set IQ? is the set of principal Q’s IBs that match h1. If a set IQ? is empty,

3 The difference between these two configurations is whether it is the prover or the verifier that
initiates the protocol.

4 Note that N does not function like the key in a keyed cryptographic hash. A keyed crypto-
graphic hash offers hardly any guarantees in case the key is compromised. See Section 3.2 for
more details.

9.2. Protocol Description (Simple, no Encryption) 127

1. Victor chooses an IB IV ∈ KBV of which he wants to test Peggy’s
knowledge; Victor computes h1 = H(IV , N); Victor computes
IV ? ⊆ KBV ; Victor generates a random challenge C

2. Victor sends Peggy the messages ask(h1) and challenge(C)

3. Peggy computes IP ? ⊆ KBP

4. For each IPi
∈ IP ? of which Peggy is willing to prove her knowledge to

Victor, the following happens:

(a) Peggy computes h2i = H(IPi , N, P,C)

(b) Peggy sends Victor the message prove(h2i
)

(c) Victor verifies whether h2i
is equal to any H(IVj

, N, P,C), where
IVj

∈ IV ? (locally computed). If they are equal, Victor concludes
that IPi

equals the matching IVj
, and thereby verifies that Peggy

knows the matching IVj .

5. Peggy sends Victor the message halt

6. Victor concludes that no more prove(h2i
) messages will follow

FIGURE 9.1: The T-1 protocol where the verifier initiates and no encryption is
used

1. Peggy chooses an IB IP ∈ KBP of which she wants to prove her
knowledge to Victor; Peggy computes h1 = H(IP , N)

2. Peggy sends Victor the message ask(h1)

3. Victor computes IV ? ⊆ KBV

4. if IV ? = ∅, Victor sends Peggy the message halt and the protocol is
halted

5. (IV ? 6= ∅) Victor generates a random challenge C

6. Victor sends Peggy the message challenge(C)

7. Peggy computes h2 = H(IP , N, P, C)

8. Peggy sends Victor the message prove(h2)

9. Victor verifies whether h2 (received from Peggy) is equal to any
H(IVj , N, P,C), where IVj ∈ IV ? (locally computed). If they are equal,
Victor concludes that IP equals the matching IVj

, and thereby verifies
that Peggy knows IVj

FIGURE 9.2: The T-1 protocol where the prover initiates and no encryption is
used

128 Chapter 9. 1-to-many Protocols (T-1)

1. Alice chooses an IB IA ∈ KBA of which she wants to prove her
knowledge to Bob, and of which she wants to test Bob’s possession;
Alice computes h1 = H(IA, N); Alice computes IA? ⊆ KBA; Alice
generates a random challenge CA

2. Alice sends Bob the messages ask(h1) and challenge(CA)

3. Bob computes IB? ⊆ KBB

4. If IB? = ∅, Bob sends Alice the message halt and the protocol is halted

5. (IB? 6= ∅) Bob generates a random challenge CB

6. Bob sends Alice the message challenge(CB)

7. Alice computes h2A
= H(IA, N, A,CB)

8. Alice sends Bob the message prove(h2A
)

9. Bob verifies whether h2A
(received from Alice) is equal to any

H(IBi
, N, A,CB), where IBi

∈ IB? (locally computed). If they are equal,
Bob concludes that IA equals the matching IBi

, and thereby verifies that
Alice knows the matching IBi

(which we will call IB from here on)

10. If Bob is not willing to prove his knowledge of IB to Alice, Bob sends
Alice the message halt and the protocol is halted

11. (Bob is willing to prove his knowledge of IB to Alice) Bob computes
h2B

= H(IB , N, B, CA)

12. Bob sends Alice the message prove(h2B
)

13. Alice verifies whether h2B
(received from Bob) is equal to

H(IA, N, B, CA) (locally computed). If they are equal, Alice concludes
that IA equals IB , and thereby verifies that Bob knows the matching IA

FIGURE 9.3: The mutual T-1 protocol, where no encryption is used

principal Q has no IB to prove or verify knowledge of. If there is one IB in the
set, the agent may prove or verify knowledge of this IB.

It is extremely unlikely that there will be more than one IB in the set IQ?.
However, the protocol easily copes with the situation if it occurs.5 If this pro-
tocol is widely adopted and applied, it can be expected that somewhere this

5 If there is more than one IB in the set IQ?, an ‘external’ collision of the hash function has oc-
curred [PvO95]. This is highly improbable, but not impossible. In such a case the principal
wants to discriminate between the members of the set. He can do this by making sure his chal-
lenge CQ yields a different hash H(IQi

, N, P, CQ) for each element IQi
∈ IQ?.

Ensuring this is easy because it is extremely unlikely for two IBs I and I′ that both H(I)
and H(I′) clash and that H(I, CQ) and H(I′, CQ) clash as well. If this would not be extremely
unlikely, this would be a very severe problem of the supposedly cryptographic hash function.
In practice, principal Q may choose a CQ at random and check for security’s sake whether there
are new clashes, and choose another CQ if this would be the case.

This whole process of generating the challenge ensures that each possible h2 corresponds
to exactly one IQi

∈ IQ?. In the figures, we summarize this process as ‘generating a random
challenge such that it discriminates’.

9.3. Making the Protocol More Efficient (Elaborate, Encryption) 129

A Hey! You know what? A Hey! You know what?
B Huh, What? B Huh, What?
A Well, you know, don’t you? A Well, you know, don’t you?
B I don’t know what you are

talking about
B Ahh, yeah, of course

A Well, never mind A Thank you, goodbye

FIGURE 9.4: A rough paraphrase of the T-1 protocols. The above are two differ-
ent conversations between A and B. On the left is the conversation which can
be considered an equivalent of an unsuccessful protocol run. The conversation
on the right can be considered an equivalent of a successful protocol run.

situation will occur. If the protocol could not handle this situation well, data
corruption would be the result. Therefore, the ability to handle such unlikely
situations still is an important feature.

Note that without the challenge C in the protocol, the prover could fool the
verifier if the prover could somehow obtain h1 and h2 without ever knowing
I . Therefore, the challenge C should be unpredictable to the prover, because
it makes such a scenario infeasible. The challenge is there to prevent that the
prover can store and present precomputed, stored values.

Without the nonce N in the protocol, any eavesdropper who happens to
know I can analyze and interpret the protocol, which is undesirable. When
the eavesdropper does not know the N , this analysis and interpretation is no
longer possible. In the next section we further elaborate on eavesdroppers and
their abilities to interpret messages of this protocol. In typical applications
of one-way hashes, the input to the hash is more or less public knowledge.
This protocol on the other hand exploits the fact that the input may not be
publicly known. Successful completion depends on one of the players being
able to ‘invert’ the one-way hash, since it knows the original input to the hash
function.

To summarize, the protocol ‘obscures’ messages in such a way that only
recipients with specific a priori knowledge can interpret the messages. A rough
paraphrase6 of the T-1 protocols can be found in Figure 9.4. It is very sketchy,
but illustrates the non-intuitivity of the protocols in an intuitive way.

9.3 Making the Protocol More Efficient
(Elaborate, Encryption)

The ‘simple’ version of the T-1 protocol, as presented in the previous section,
has a constant communication complexity7, which leaves no room for improve-
ment. The computational complexity does leave some room for improvement.8

6 With thanks to Marius Bulacu, who came up with this paraphrase.
7 More precisely, constant for every secret of which possession is proven.
8 For a basic introduction to complexity, consult Section 2.3.

130 Chapter 9. 1-to-many Protocols (T-1)

1. Create the look-up table, with the columns hash and IB location.
IB location is some information on how to locate the IB on the local
system. (If IBs are files, this would typically be the file name.) Make the
table efficiently searchable on at least the hash column.

2. For each IB IQ ∈ KBQ, compute H(IQ), and insert (H(IQ), location(IQ))
into the table. (Computing the hash value has a time complexity of
size(IQ).)

3. With each modification of personal knowledge, update the look-up
table:

(a) For each added IB IQ, insert (H(IQ), location(IQ)).

(b) For each removed IB IQ, remove (H(IQ), location(IQ)).

(c) Consider each modified IB as an old IB to be removed, and a new
IB to be added.

FIGURE 9.5: The initialisation and maintenance of the look-up table, needed
by any non-initiating player of the protocol

The computationally most expensive part in the protocol is the computation of
the set IQ?. The time complexity of this computation is O(size(KBQ)+ |KBQ|),
where size(KBQ) =

∑
IQ∈KBQ

size(IQ), size(IQ) is the number of bits in IQ, and
|KBQ| is the number of items in KBQ (i.e., the cardinality). Note that this time
complexity essentially is the space required to store all IBs.

In this section we will show how we can improve the computational com-
plexity of the protocol by shifting this computational load to a precomputation
step which is only executed once. The improved protocol can be run any num-
ber of times without requiring this hefty computation.

This process of computing IQ? can be divided into two steps:

1. Precomputing a look-up table of size O(|KBQ|) once, which can be used
in all runs of the protocol which share the same nonce. Generating the
look-up table still has computational complexity O(size(KBQ) + |KBQ|).

2. Looking up received hashes h1 in the table. When an efficient storage
technique for the look-up table is used, this has a time complexity of only
O(ln |KBQ|).

If principal Q learns a new IB IQ, the principal has to update his look-up
table, which has a time complexity of O(ln |KBQ|+ size(IQ)). How to initialize
and maintain the look-up table is described in Figure 9.5.

Computing a look-up table and performing the protocol once, has the same
computational complexity as performing the protocol without any precompu-
tations. Doing precomputations has two benefits. Firstly, the speed of execu-
tion of the protocol is much higher, because there are no expensive computa-
tions to wait for. Secondly, we can only re-use the look-up table as far as it is

9.3. Making the Protocol More Efficient (Elaborate, Encryption) 131

1. Victor chooses an IB IV ∈ KBV of which he wants to test Peggy’s
knowledge; Victor looks up h1 = H(IV); Victor looks up IV ? ⊆ KBV ;
Victor generates a random challenge C

2. Victor sends Peggy the message {ask(h1), challenge(C)}K

3. Peggy decrypts the message from Victor and obtains the messages
ask(h1) and challenge(C); Peggy looks up IP ? ⊆ KBP

4. For each IPi ∈ IP ? of which Peggy is willing to prove her knowledge to
Victor, the following happens:

(a) Peggy computes h2i
= H(IPi

, P, C)

(b) Peggy sends Victor the message prove(h2i
)

(c) Victor verifies whether h2i is equal to any H(IVj , P, C), where
IVj ∈ IV ? (locally computed). If they are equal, Victor concludes
that IPi

equals the matching IVj
, and thereby verifies that Peggy

knows the matching IVj
.

5. Peggy sends victor the message halt

6. Victor concludes that no more prove(h2i) messages will follow

FIGURE 9.6: The protocol where the verifier initiates and encryption is used

1. Peggy chooses an IB IP ∈ KBP of which she wants to prove her
knowledge to Victor; Peggy looks up h1 = H(IP)

2. Peggy sends Victor the message {ask(h1)}K

3. Victor decrypts the message from Peggy and obtains the message
ask(h1); Victor looks up IV ? ⊆ KBV

4. if IV ? = ∅, Victor sends Peggy the message halt and the protocol is
halted

5. (IV ? 6= ∅) Victor generates a random challenge C

6. Victor sends Peggy the message challenge(C)

7. Peggy computes h2 = H(IP , N, P, C)

8. Peggy sends Victor the message {prove(h2)}K

9. Victor decrypts the message from Peggy and obtains the message
prove(h2); Victor verifies whether h2 (received from Peggy) is equal to
any H(IVj

, N, P,C), where IVj
∈ IV ? (locally computed). If they are

equal, Victor concludes that IP equals the matching IVj
, and thereby

verifies that Peggy knows IVj

FIGURE 9.7: The T-1 protocol where the prover initiates and encryption is used

132 Chapter 9. 1-to-many Protocols (T-1)

1. Alice chooses an IB IA ∈ KBA of which she wants to prove her
knowledge to Bob, and of which she wants to test Bob’s possession;
Alice looks up h1 = H(IA); Alice looks up IA? ⊆ KBA; Alice generates a
random challenge CA

2. Alice sends Bob the message {ask(h1), challenge(CA)}K

3. Bob decrypts the message from Alice and obtains the messages ask(h1)
and challenge(CA); Bob looks up IB? ⊆ KBB

4. If IB? = ∅, Bob sends Alice the message halt and the protocol is halted

5. (IB? 6= ∅) Bob generates a random challenge CB

6. Bob sends Alice the message challenge(CB)

7. Alice computes h2A
= H(IA, A, CB)

8. Alice sends Bob the message {prove(h2A
)}K

9. Bob decrypts the message from Alice and obtains the message
prove(h2A

); Bob verifies whether h2A
(received from Alice) is equal to

any H(IBi
, A, CB), where IBi

∈ IB? (locally computed). If they are
equal, Bob concludes that IA equals the matching IBi , and thereby
verifies that Alice knows the matching IBi (which we will call IB from
here on)

10. If Bob is not willing to prove his knowledge of IB to Alice, Bob sends
Alice the message halt and the protocol is halted

11. (Bob is willing to prove his knowledge of IB to Alice) Bob computes
h2B

= H(IB , N, B, CA)

12. Bob sends Alice the message prove(h2B
)

13. Alice verifies whether h2B
(received from Bob) is equal to

H(IA, N, B, CA) (locally computed). If they are equal, Alice concludes
that IA equals IB , and thereby verifies that Bob knows the matching IA

FIGURE 9.8: The symmetric protocol with encryption.

safe to re-use the nonce that was used to construct the look-up table. However,
for each distinct nonce used, the player still needs to generate such a look-up
table, which is by far the most expensive part of the T-1 protocols.

Therefore, we can improve dramatically on speed if we can find a way to
safely re-use nonces, or to use no nonces at all. The reason to use nonces was
to make sure we have semantic security with respect to any third party ob-
serving the conversation. Semantic security can also be achieved by means of
encryption of some crucial parts of the protocol. The parts that need to be en-
crypted are those of which an eavesdropper could either infer the IB9, or could
verify the proof. To prevent inference of the IB, h1 should be encrypted. To

9 With ‘infer’, we mean ‘properly guess’.

9.4. Correctness Proof in GNY Logic 133

prevent verification of the proof, or the possibility to infer IB by a brute-force
attack, at least one of C and h2 should be encrypted. Since C and h2 are always
sent by opposing players, we may choose to encrypt the one sent by the player
that also sent h1, which is the player that initiated the protocol. Thus only the
initiator needs to be able to send encrypted messages.

The adjusted (‘elaborate’) versions of the T-1 protocol are shown in Figures
9.6 (the verifier initiates), 9.7 (the prover initiates), and 9.8 (mutual proof).

By using encryption and no nonce (or a constant nonce), any responding
player of the protocol needs to generate the look-up table only once. The need
to establish a common nonce is no longer there, but the need for key exchange
has come in its place. Since the protocol requires authentication, it may well be
that key exchange is required anyway.

9.4 Correctness Proof in GNY Logic

In the remainder of this chapter, we will use GNY logic10 to prove the T-1 pro-
tocols correct. To be precise, we will prove correct the configuration where
the verifier initiates and no encryption is used (depicted in Figure 9.1). The
configurations in which the prover initiates the protocol and where a mutual
proof is exercised do not shed new light on the security analysis of the proto-
cols. The proofs for these configurations can be obtained by slight adaptation
of the proof for the configuration where the verifier initiates. The proof for the
‘elaborate’ version where encryption is used is very similar to the proof for the
‘simple’ version where no encryption is used. Therefore, we will only analyze
the simple version.

Our proof uses knowledge preconditions, a special type of assumptions. These
are explained in Section 9.4.1. The GNY idealization of the protocol and the
precise protocol claims are given in Section 9.4.2. Then, in Section 9.4.3, we give
an analysis of the protocol without encryption up to the point where the newly
introduced inference rule H2 is needed. A discussion on how to complete the
proof, including the proof completion itself, is shown in Section 9.4.4.

In Section 9.1, it has been noted that the communication channel should
be authenticated and cannot be modified by an adversary. The most impor-
tant prerequisite is that the last message of the protocol is clearly bound to its
sender, more precisely that the receiver can verify who is the sender. For our
protocols, it is not really relevant in what way this authentication is established.
To keep the proofs of the protocols as simple as possible, we simply assume a
specific way of authentication of the sender. We choose a public-key signa-
ture for this. This choice is not essential and if we change this authentication
method, the protocol proofs can easily be adjusted to reflect this.

It may seem counter-intuitive to prove a protocol that does not use encryp-
tion to be correct by assuming signatures, which essentially is a special case of

10 GNY logic is summarized in Appendix B; our extension of GNY logic is explained in Chapter 6,
and authentication logics in general are extensively explained in Chapter 4.

134 Chapter 9. 1-to-many Protocols (T-1)

encryption. However we would like to stress that this is just the easiest way to
prove the protocol correct. The issue is that we do not have to assume encryp-
tion for our protocols to work, but only sender authentication.

9.4.1 Knowledge Preconditions

A knowledge precondition is a special type of protocol assumption. First of all,
it is an assumption which states that a particular principal has certain positive
knowledge11. Moreover, a knowledge precondition is a neccessary condition
for a protocol to end in an accepting state. For some protocols, it is useful to
distinguish certain knowledge preconditions from the other protocol assump-
tions in order to analyse the protocol. This is because whether the protocol
ends in in an accepting state should coincide with the conjunction of all distin-
guished knowledge preconditions. In the analysis of the T-1 protocol we use
knowledge preconditions.

In the T-1 protocol, an accepting state is a state in which the verifier is con-
vinced of the knowledge of the prover, i.e., the verifier accepts. The knowledge
preconditions of the T-1 protocol are that both the verifier and the prover know
the secret. Thus, a correctness proof of the T-1 protocol in GNY logic (or more
precisely, a derivation of the accepting protocol state) should critically depend
on the truth value of the knowledge precondition. Any unsatisfied knowledge
precondition should result in the impossibility of a GNY derivation of the ac-
cepting protocol state. This kind of proof requires a completeness assumption12

about cryptographic hash functions.13 Also, correct inference rules for cryp-
tographic hash functions are required, most notably inference rule H214. Our
completeness assumption is:

The rules P4, I3 and H2 capture all relevant properties of crypto-
graphic hash functions.15

One of the major issues of the T-1 protocols is whether the prover can cheat
by asking someone else to compute the proof in name of the prover, and just
forward this proof. Making someone different from the prover compute the ac-
tual proof can be achieved by either a successful man-in-the-middle attack by
the prover, or by a willing assistant of the prover which does have the knowl-
edge referred to in the knowledge precondition. We should design protocols in
such a way that successful man-in-the-middle attacks do not exist. Authenti-
cation logics such as GNY logic help in analyzing the existence of such attacks.
However, we cannot fight willing assistants of provers. In some sense, this is
also unnecessary, since the goal of the secret prover protocols is to test whether
the prover has effective access to the secret, and one may reasonably claim that

11 That is, a knowledge precondition cannot be of the form ‘principal A does not know X’.
12 Completeness assumptions are introduced in Section 6.1.2 (page 70).
13 Cryptographic hash functions are extensively explained in Chapter 3.
14 Rule H2 is introduced in Section 6.2.1 on page 74.
15 The rules P4 and I3 are introduced in Appendix B.2, on page 185.

9.4. Correctness Proof in GNY Logic 135

the prover indeed has such access if she has an assistant who will perform
computations on the secrets on behalf of the prover.

The T-1 protocols are protocols that by design should fail to complete if the
knowledge precondition is not true at the start of a protocol run. Normally
in GNY logic a protocol is proven correct if we can infer the desired end state
using the assumptions, inference rule and communication steps. However, for
a protocol to fail if an assumption is not met, means there should not exist
proofs that do not depend on the critical assumptions. This leads to the pos-
sibly somewhat counterintuitive observation that some GNY correctness proofs
prove the incorrectness of a protocol. Exactly the proofs that do not depend on
all the knowledge precondition assumptions indicate that a protocol is incor-
rect. We call these proofs invalidators. Non-existence of invalidators can only
be proven if we make a completeness assumption: we assume that we know
all applicable inference rules, or at least all rules that can lead us to a proof of a
protocol (some of which may be invalidators).

It should be noted that the absence of invalidators does not prove correct-
ness of a protocol in a strict sense. Just as with normal authentication logics, it
only shows that the protocol has passed a test of some not-so-obvious flaws.

9.4.2 Claims and GNY Idealization

In the T-1 protocol we have two participating principals, V the Verifier and
P the Prover. We assert that, for any I , our protocols satisfy the following
properties:

1. ‘The verifier learns whether P knows I , iff the verifier knows I and the
prover wants to prove her knowledge of I’:
V |≡ P 3 I holds after the protocol run ⇐⇒

P 3 I and V 3 I hold before the protocol run,
and P wants to prove possession of I before the protocol run.

2. ‘Only the verifier learns whether anybody knows I by means of the pro-
tocol’:
For any principal Q, except V :

(a) Q |≡ P 3 I holds after the protocol run ⇐⇒
Q |≡ P 3 I holds before the protocol run.

(b) Q |≡ V 3 I holds after the protocol run ⇐⇒
Q |≡ V 3 I holds before the protocol run.

3. ‘Nobody learns I by means of the protocol’:
For any principal Q,
Q 3 I holds after the protocol run ⇐⇒

Q 3 I holds before the protocol run.

Here we should mention that all right-hand sides of the assetions should
include ‘or . . . learns X by messages outside of the protocol’, where X respec-
tively reads I (1), P 3 I (2a), Q 3 I (2b), and I (3). Of course, a principal may

136 Chapter 9. 1-to-many Protocols (T-1)

knowledge preconditions
A.1 P 3 I
A.2 V 3 I

assumptions
A.3 P 3 P A.5 P 3 −K A.8 V 3 C A.10 P 3 N
A.4 V 3 P A.6 V 3 +K A.9 V |≡](C) A.11 V 3 N

A.7 V |≡+K7→ P

the protocol itself
1 V → P : H(I,N), C
2 P → V : {H(I,N, P,C)}−K

claims See section 9.4.2

FIGURE 9.9: GNY idealization of the T-1 protocol where the verifier initiates
and no encryption is used. The formal GNY language used is explained in
Appendix B.

learn something by a message outside of the protocol. Learning in such a way
has nothing to do with any property of the protocol, as it certainly not learned
by means of the protocol.

We will prove these properties for the T-1 protocol where the verifier initi-
ates and no encryption is used. The GNY idealization of this protocol is given
in Figure 9.9. The ⇐ part of property 1 will be proven in sections 9.4.3 and
9.4.4. The ⇒ part of property 1 and property 3 will be proven in Section 9.4.5.
Proving property 2 requires us to make some assumptions on the beliefs and
possessions of an attacker. This will be done in Section 9.4.6.

9.4.3 The Easy Part of the Proof

With the GNY idealization given in Figure 9.9, we can analyze the T-1 protocol
in a rather straightforward way. The first step is to apply the protocol parser
to the idealized protocol, shown in Figure 9.10. As discussed in Sections 4.3
and 6.2.2, this gives for every communication step (step transition) in the pro-
tocol two statements. The first statement asserts that the sender possesses (can
construct) the message he is sending, the second statement asserts what the
receiver will see when he receives the message.

The protocol assumptions are given in Figure 9.9. Assumptions A.1 and
A.2 express that the principals do indeed know the secret. Thus, these are the
knowledge preconditions. Assumptions A.3 and A.4 reflect that both princi-
pals know the identity of P . Assumption A.5 expresses that the prover knows
her private key, and assumption A.6 expresses that the verifier knows the cor-
responding public key. Assumption A.7 reflects that the verifier believes this
public key indeed corresponds to the prover’s private key. Assumptions A.8
and A.9 reflect respectively that the verifier knows his own challenge and that

9.4. Correctness Proof in GNY Logic 137

protocol sender possession receiver learning
step (precondition) (postcondition)

1 V 3 (H(I,N), C) P C (∗H(I,N), ∗C)
2 P 3 {H(I,N, P,C)}−K V C ∗{∗H(I,N, P,C)}−K

FIGURE 9.10: The output of the protocol parser for the T-1 protocol where the
verifier initiates and no encryption is used.

the verifier believes its freshness. Assumptions A.10 and A.11 reflect that both
principals know the nonce.

Just using these assumptions we can already infer a few lines which will be
needed later on in the protocol. Namely the verifier can send message 1 of the
protocol, and he can verify message 2 which the prover ought to send.

B.1 V 3 (I,N) P2(A.2, A.11)
B.2 V 3 H(I,N) P4(B.1)
B.3 V 3 (H(I, N), C) P2(B.2, A.8)
B.4 V 3 (I,N, P,C) P2(A.2, A.11, A.4, A.8)
B.5 V |≡](I,N, P,C) F1(A.9)
B.6 V 3 H(I,N, P,C) P4(B.4)
B.7 V 3 H(H(I, N, P,C)) P4(B.6)
B.8 V |≡ φ(H(I,N, P,C)) R6(B.7)

Now we start the actual protocol. The verifier sends a message to the
prover. Thus, the verifier learns nothing new yet. The prover, however, can
calculate the proof which she will send later on in message 2. The conveyed
message is shown in line C.1.

C.1 P C (∗H(I,N), ∗C) [1](B.3)
C.2 P C ∗H(I,N) T2(C.1)
C.3 P C ∗C T2(C.1)
C.4 P C C T1(C.3)
C.5 P 3 C P1(C.4)
C.6 P 3 (I,N, P,C) P2(A.1, A.10, A.3, C.5)
C.7 P 3 H(I,N, P,C) P4(C.6)
C.8 P 3 {H(I, N, P,C)}−K P8(A.5, C.7)

The justification of line C.1 may require some explanation. On line C.1, it is
reflected that the recipient of the first message in the protocol learns the mes-
sage. The statement on line C.1 corresponds with the ‘receiver learning’ part of
message 1 in the output of the protocol parser (Figure 9.10). The justification
B.3 corresponds with the ‘sender possession’ part of message 1 in the output of
the protocol parser.

9.4.4 Different Options to Complete the Proof

So far, the protocol analysis is plain and rather simple. Completing the proof
from here on is not as straightforward as the easy part shown above. We will
provide three options to complete the proof. The first two options are flawed,

138 Chapter 9. 1-to-many Protocols (T-1)

and we will explain why. The third option we present is the ‘correct one’: it is
not flawed.

1. There is a way to prove correctness in GNY logic of this protocol without
introducing new inference rules. In that case, a rather appealing but weak
assumption would have to be added:

A.12 V |≡ V
N↔ P

This assumption states that V believes that only V and P know the se-
cret N . Using this assumption, the proof goes as follows. The conveyed
message is shown in line D.1.

D.1 V C ∗{∗H(I,N, P,C)}−K [2](C.8)
D.2 V C {∗H(I,N, P,C)}−K T1(D.1)
D.3 V C ∗H(I,N, P,C) T6(D.2, A.6)
D.4 V |≡ P |∼ (I,N, P,C) I3(D.3, B.4, A.12, B.5)
D.5 V |≡ P 3 (I,N, P,C) I6(D.4, B.5)
D.6 V |≡ P 3 I P3(D.5)

Note that in this proof, neither the identity of P , nor P ’s signature are
used. Though the above proof is a correct GNY logic proof, it does not
help us because it depends on assumption A.12. This assumption es-
sentially states that the verifier should trust the prover on not disclosing
the secret to someone else, since the verifier has no control over the truth
value of this assumption. If the prover does disclose the secret, this opens
up possibilities for a successful man-in-the-middle attack: the prover can
use the same nonce with multiple different principals, and use a proof
given by some principal Q to prove to principal V that she knows the
secret, as long as the verifier V ‘knows the name of Q’ (V 3 Q).

To see the man-in-the-middle attack easier, observe that a protocol which
does not include the identity of P would have a virtually identical anal-
ysis in GNY logic. Even without V 3 Q, a verifier could be deceived in
such a simplified protocol.

2. In order to prove correctness without relying on assumption A.12, we
need new inference rules. In Section 6.2.1 we have discussed various
rules, and we will apply them here. Using rule H1, we can finish the
protocol proofs. The proof is as follows:

D’.1 V C ∗{∗H(I,N, P,C)}−K [2](C.8)
D’.2 V C {∗H(I,N, P,C)}−K T1(D’.1)
D’.3 V C ∗H(I,N, P,C) T6(D’.2, A.6)
D’.4 V |≡ P |∼ (I,N, P,C) H1(D’.3, B.4)
D’.5 V |≡ P 3 (I,N, P,C) I6(D’.4, B.5)
D’.6 V |≡ P 3 I P3(D’.5)

Note that in this proof, P ’s identity is not used. As discussed in Sec-
tion 6.2.1, rule H1 is dubious.

9.4. Correctness Proof in GNY Logic 139

B.1 V 3 (I, N) P2(A.2, A.11)
B.2 V 3 H(I,N) P4(B.1)
B.3 V 3 (H(I,N), C) P2(B.2, A.8)
B.4 V 3 (I, N, P,C) P2(A.2, A.11, A.4, A.8)
B.5 V |≡](I,N, P,C) F1(A.9)
B.6 V 3 H(I,N, P,C) P4(B.4)
B.7 V 3 H(H(I,N, P,C)) P4(B.6)
B.8 V |≡ φ(H(I,N, P,C)) R6(B.7)
C.1 P C (∗H(I, N), ∗C) [1](B.3)
C.2 P C ∗H(I,N) T2(C.1)
C.3 P C ∗C T2(C.1)
C.4 P C C T1(C.3)
C.5 P 3 C P1(C.4)
C.6 P 3 (I,N, P,C) P2(A.1, A.10, A.3, C.5)
C.7 P 3 H(I,N, P,C) P4(C.6)
C.8 P 3 {H(I,N, P,C)}−K P8(A.5, C.7)
D”.1 V C ∗{∗H(I,N, P,C)}−K [2](C.8)
D”.2 V C {∗H(I,N, P,C)}−K T1(D”.1)
D”.3 V C ∗H(I,N, P,C) T6(D”.2, A.6)
D”.4 V |≡ P |∼ ∗H(I,N, P,C) I4(D”.2, A.6, A.7, B.8)
D”.5 V |≡ P |∼ (I,N, P,C) H2(D”.4, B.4)
D”.6 V |≡ P 3 (I,N, P,C) I6(D”.5, B.5)
D”.7 V |≡ P 3 I P3(D”.6)

FIGURE 9.11: GNY proof of the T-1 protocol where the verifier initiates and no
encryption is used.

3. Using the well-justified rule H2 from Section 6.2.1, we can also finish the
protocol proofs. The proof is as follows:

D”.1 V C ∗{∗H(I,N, P,C)}−K [2](C.8)
D”.2 V C {∗H(I,N, P,C)}−K T1(D”.1)
D”.3 V C ∗H(I,N, P,C) T6(D”.2, A.6)
D”.4 V |≡ P |∼ ∗H(I,N, P,C) I4(D”.2, A.6, A.7, B.8)
D”.5 V |≡ P |∼ (I, N, P,C) H2(D”.4, B.4)
D”.6 V |≡ P 3 (I, N, P,C) I6(D”.5, B.5)
D”.7 V |≡ P 3 I P3(D”.6)

Note that changing this proof to use rule H3 is trivial: P only needs to
insert “I know” into its signed messages, and V only needs to verify that
this token is indeed present in the message.

Thus, the whole GNY proof of the T-1 protocol is as in Figure 9.11. If we ob-
serve that the prover will only engage in the protocol if he wants to prove pos-
session of i, we have proven the ⇐ part of property 1 (stated in Section 9.4.2).

140 Chapter 9. 1-to-many Protocols (T-1)

9.4.5 Proving principals do not learn too much

So far, of the properties stated in section 9.4.2, we have only proven the⇐ part
of property 1. In this section, we will prove the the ⇒ part of property 1, and
we will prove property 3.

1. ‘The verifier learns whether P knows I , iff the verifier knows I and the
prover wants to prove her knowledge of I’,⇒ part: We assume V |≡ P 3
I holds after the protocol run (the verifier has been convinced of prover’s
possession of I).

For the prover to be able to actually prove possession of I , she has to use
it while constructing message 2. If she does not possess I , she cannot sat-
isfy step C.6, which is necessary for C.8, which states message 2. This is
because the only way in which the prover can obtain C.7 is by application
of inference rule I3.16 Thus, P 3 I holds before the protocol run.

If the prover would not want the verifier to possibly learn that the prover
knows I , the prover would not have sent message 2. Thus, the prover
wants to prove her knowledge of I .

For the verifier to be able to verify the proof, he has to possess I as well.
More specifically, the verifier has to verify whether the message he sees
in line D”.3 (or equivalently, in D.3 or D’.3) equals the value the verifier
computed at line B.6.17 Thus, V 3 I holds before the protocol run.

2. ‘Nobody learns I by means of the protocol’: We prove this by contra-
diction. Let us assume that principal Q does learn I by means of the
protocol, and that by analyzing messages Q managed to reconstruct I . I
itself is never conveyed except as an argument to a one-way hash func-
tion. Thus, Q managed to invert a one-way hash function. Obviously,
this is impossible.

In GNY logic, this is reflected in the inference rules of our completeness
assumption (P4, I3 and H2): in every rule in which something is inferred
from a term which involves a term of the form H(X) (i.e., rules I3 and
H2), the principal that learns something by means of the inference rule,
must possess X as a condition for the inference rule to apply18.

16 See also the completeness assumption about cryptographic hash functions on page 134.
17 Note that this protocol does not depend on the recognizability constraint of rule I4, as used

in line D”.3 of the last proof. Even if the verifier can always recognize the message sent by the
prover, as needed for verification of the signature, the verifier still cannot verify the proof, as
the verifier has nothing to compare the message with. If we change the protocol to use rule
H3, introduction of the “I know”-token will lead to immediate recognizability of the signed
message. This will not invalidate the proof.

18 In rule I3, P learns something as a result of observing H(X, S), but only if P 3 (X, S) is also
satisfied, i.e., if P knows the protected secret already. Similarly, in rule H2, V learns something
as a result of believing P conveyed H(X, P), but only if V 3 (X, P) is also satisfied, i.e., if V
knows the protected secret already. Note that the principal names P and V in the rules I3 and
H2 do not only apply to the principals P and V in the protocol, but to any principal.

9.4. Correctness Proof in GNY Logic 141

Except that the protocol works, it is also very efficient. Both the verifier
and the prover only need to perform a constant number of steps. The prover
will, upon seeing ∗H(I,N), look whether she has a matching secret I . Only
after establishing that she actually does, she will start further computations.
The bottleneck of course is recognizing an I which matches the sent H(I,N).
A principal can in fact generate a look-up table in advance, which stores for
each possible I the corresponding H(I,N) value. This is a one-time operation
whose cost is proportional to the total size of all secrets that a player wants
to be able to look up. This has to be done for each value of N the principal
is interested in. If however the protocol which uses encryption is used, this
dependency on N disappears.

9.4.6 Modeling the beliefs and possessions of an attacker

In the previous section we have shown that no principal can learn I itself from
observing the protocol. However, we are also interested in anything that an
eavesdropper could learn. Could an eavesdropper become convinced that the
prover or the verifier knows I? This is what property 2 of section 9.4.2 is about.
Or, less bad but still undesirable: could an eavesdropper learn about what
secret I the protocol is run if she already knows the secret herself?

Let us assume that, at the start of the protocol, Eve the eavesdropper knows
everything the participating principals know, except P ’s private key, the nonce
N and the challenge C, but including the secret I :

E.1 E 3 I E.3 E |≡+K7→ P E.5 E |≡](C)
E.2 E 3 +K E.4 E 3 P

In the course of the protocol, E will learn both {H(I, N, P,C)}−K , C and
H(I,N). Since Eve does not know N , she will never be able to infer what secret
I the protocol is run about, since in all messages where I is communicated, it
is ‘mixed’ with N in a one-way hash function. For the same reason Eve cannot
verify P ’s proof. Thus, all three values Eve learns are indistinguishable from
random noise (as per the random oracle model, see Section 3.3). In the case of
the protocol that uses encryption instead of a nonce, E will learn {H(I), C}+K

and {H(I, P, C)}−K . E cannot decrypt the first message, and therefore never
learns C, which is needed to be able to interpret {H(I, P, C)}−K .

An eavesdropper knowing everything except private keys and the shared
nonce does not learn anything sensible from observing the protocol. This is a
strong result. One of its implications is that N may be known to any princi-
pal who is either (1) trusted by the verifier, or (2) not capable of intercepting
messages from or to any principal using the nonce N .

One last question is whether one of the participants could be a passive at-
tacker. In that case, the attacker would also possess N . For the case the attacker
is the verifier, the proof is trivial, since the goal of the protocol is that the ver-
ifier does learn. For the case where the attacker is the prover, the prover will
indeed learn what secret the protocol is about. However, the prover will not
learn whether the verifier really possesses I : the verifier might have learned

142 Chapter 9. 1-to-many Protocols (T-1)

H(I,N) from someone else.

9.5 Conclusion

In this chapter, we have presented our T-1 protocol. Let us return to Victor, the
secret agent who wants to protect Peggy from great danger (the story which
opened this chapter, page 123). Peggy is invited by Mallory, but will get killed
by Mallory if she accepts the invitation. Peggy is reluctant to disclose the invi-
tiation to Victor. Let us see how the T-1 protocol handles this situation.

1. How do Victor and Peggy make sure the invitation is not disclosed in case the
other does not know of the invitation?
Peggy and Victor only send cryptographic hash values of the invitation.
From a cryptographic hash value, one cannot infer the pre-image (Sec-
tion 3.2). Thus, nobody can learn the invitation from the communicated
messages.

2. How do Victor and Peggy establish about what secret they are communicating?
Victor sends Peggy the cryptographic hash value of the invitation I . If
Peggy knows the invitation, she recognizes the hash value.

3. How does Victor become convinced of Peggy’s knowledge of the invitation?
Victor asks Peggy to present a cryptographic hash value of the invitation
and a challenge C chosen by Victor. Only if Peggy has the invitation, she
will be able to construct the requested cryptographic hash value.

4. How is a man-in-the-middle attack prevented?
In the pre-image of the hash value that must convince of possession, the
identity of the prover must be incorporated.

In a man-in-the-middle attack, Peggy would try to deceive Victor by ini-
tiating a concurrent protocol with someone else (say, Cecil) and passing
the messages from Cecil to Victor.

If Peggy sends Cecil’s messages to Victor, these hash values will be con-
structed with Cecil’s identity, and not Peggy’s. Victor expects hash values
in which Peggy’s identity P has been incorporated. He can detect it if this
is not the case. Thus, if Peggy mounts a man-in-the-middle attack, Victor
will not be convinced.

5. How do Peggy and Victor make sure that eavesdroppers cannot learn anything
from the protocol?
There are two solutions:

• They use a commonly agreed, secret nonce N , which is incorporated
into every pre-image before the hash is computed. As the eaves-
dropper does not know the nonce, the eavesdropper cannot learn
anything.

9.5. Conclusion 143

• They use encryption to hide the hash values from which the eaves-
dropper could learn something.

6. What if one of the principals does not know the invitation?

In that case the ignorant principal sees bits which he/she cannot distin-
guish from random noise. The ignorant principal may continue the pro-
tocol, but will not convince the other principal.

7. What if not Victor, but Peggy wants to initiate the protocol?

In that case, Peggy sends the first message of the protocol. All configura-
tions of the protocol are listed in Figures 9.1–9.3 (using a nonce N), and
Figures 9.6–9.8 (using encryption).

8. What would an actual protocol run look like, if we omit all the technicalities?

Look at Figure 9.4 on page 129.

The T-1 protocol is proven correct in our extended version of GNY logic.19

The T-1 protocol works for knowledge authentication20 in the 1-to-many case:
where one of the principals ‘points at’ a secret, and the other principal looks
whether he/she knows the same secret. In the next chapter, the T-1 protocol is
generalized to the many-to-many case.

19 GNY logic is summarized in Appendix B, and our extensions are explained in Chapter 6.
20 Knowledge authentication is introduced in Chapter 8.

Chapter 10

The T-2 protocol, our solution for many-to-many
knowledge authentication, is presented. It is a

parallel composition of the T-1 protocol. It relies
on prefix trees made from hash values to optimize

communication complexity. The average-case
communication complexity is experimentally

estimated.

Many-to-many Protocols
(T-2)

In the previous chapter, we presented our T-1 protocol, which is a solution for
‘comparing information without leaking it’ in the 1-to-many case. That is the
case where one principal has only one secret in mind, and the other player
any number of secrets. The T-1 protocol can be generalized to the many-to-
many case: the case where two principals each have a large number of secrets
and wish to determine the intersection of their secrets. In this chapter, we will
present and explain our generalization, the T-2 protocol.1

The T-2 protocol offers the same security guarantees as the T-1 protocol, be-
cause the T-2 protocol can be seen as a group of parallel runs of the T-1 protocol,
and the T-1 protocol is secure under parallel composition. The T-2 protocol is,
for cooperative principals, very efficient in terms of communication complex-
ity and computational complexity.

Moreover, the T-2 protocol offers fairness: the players can make sure that
they only prove possession of secrets for which they receive a reciprocal proof
in return.

10.1 Using Prefix Trees for Efficiency

The T-2 protocol heavily relies on prefixes and prefix trees. To grasp the work-
ing of the protocol, it is important to understand some properties of prefix
trees, and how this relates to set intersection. This section will offer the neces-
sary background on this subject.

1 Discussions with Sieuwert van Otterloo have been of critical value for the work that is reported
in this chapter. The results reported up to and including Section 10.3 are joint work.

145

146 Chapter 10. Many-to-many Protocols (T-2)

Ω KBA KBB KBA ∩KBB

q q q q q q q q q q q q q q q q
0 0 0 0 0 0 0 0
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1 1 1 1 1 1 1 1
E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

q q q q q q q q0 0 0 0�
�

�
�

�
�

�
�

1 1 1 1B
B

B
B

B
B

B
B

q q q q0 0

1 1J
J

J
J

q q0�
��

1Z
ZZ
q

qEE
1

qEE
1

q��
0

q q q0�
�

1 1B
B

B
B

q q 0

1J
J
q q0�

��
1Z

ZZ
q

qEE
1

q��
0

qEE
1

qEE
1

q��0 qBB 1 q��0q q q0 0

1J
J

q q0�
��

1Z
ZZ
q

q��
0

qBB 1

q

0q q0�
��

1Z
ZZ
q

0000, 0001, 0010, 0011,
0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011,
1100, 1101, 1110, 1111

0111, 1001, 1010 0001, 1010, 1011, 1101 1010

FIGURE 10.1: Sets KBA, KBA represented as binary hash value prefix trees. In
this toy example, the length of the hash value is 4 bits. Leaf nodes at depth
4 represent full hash values. The prefix trees of the full domain Ω and the
intersection KBA ∩ KBB are also shown. Below every prefix tree, the list of
hash values in the tree is shown.

Consider two principals, Alice and Bob, with knowledge bases KBA and
KBB . A simple way to generalize the T-1 protocol to the many-to-many case,
is to repeat the protocol |KBA| times: in every run of the T-1 protocol, another
single secret of Alice is compared with all Bob’s secrets. For every secret of
Alice, l bits (where l is the length of the hash value, a security parameter) have
to be exchanged. A typical message would be: ‘Bob, do you have the secret
with hash 1ab1dabb2c90231e3182b15ffcacd732?’2 It turns out that if a
specific secret of Alice is not a secret of Bob, the communication of l bits is
largely a waste of communication capacity.

In the T-1 protocol, one player ‘points at a secret’, by sending a message
of the form ask(h1). The T-2 protocol differs from the T-1 protocol in that the
process of pointing at secrets is performed interactively and iteratively by both
principals. Instead of pointing at a secret by presenting a bit string of length k,
very short bit strings are presented. A typical message would be: ‘Bob, do you
happen to have any secrets with hash prefix 1a?’3 Both Alice and Bob may in
fact have many secrets with this hash prefix. If it is the case that Bob does not
have any secret with hash prefix 1a, he can say so to Alice: ‘Alice, I do not have
any secrets with hash prefix 1a!’4 As a result of such ‘refusal’ message, Alice
knows that stating the full hash values which start with 1a is a waste of time.

The hash values of a set of secrets can be represented in a binary prefix tree.
Figure 10.1 shows the binary prefix trees for the toy example where the length
of the hash value is four bits, Alice has three secrets, and Bob has four secrets.

The way that the T-2 protocol optimizes the communication complexity is

2 Technically, the message that is exchanged is ‘ask(1ab1dabb2c90231e3182b15ffcacd732)’.
3 Technically, the message that is exchanged is ‘ask(1a)’.
4 Technically, the message that is exchanged is ‘refuse(1a)’.

10.1. Using Prefix Trees for Efficiency 147

encoding of the prefix tree
depth 1 2 3 4 encoding

tree 01 0101 01010101 0101010101010101 size (bits)
Ω 11 1111 11111111 1111111111111111 30

KBA 11 0110 0111 010110 16
KBB 11 1011 10 0110 01 1101 18

KBA ∩KBB 11 0010 01 10 10

TABLE 10.1: Binary encoding of some hash prefix trees. The depth corresponds
to the depth of the corresponding tree (see Figure 10.1). The two bits at depth
1 signify the two possible branches at depth 1, the four bits at depth 2 signify
the possible two branches at depth 2, and so on. Whitespace is inserted in the
encodings to align the bits of the encoding with the table header.

by constructing (almost) precisely the prefix tree that belongs to the set KBA ∩
KBB (an intersection prefix tree). The efficiency of a protocol that does just this
depends on the size of an intersection prefix tree (counted in nodes), and on
the way an intersection prefix tree is encoded. Determining the expected size
of an intersection prefix tree is far from trivial, and we will devote Section 10.4
to this.

Creating an efficient encoding scheme for a binary tree (without labels) is
relatively simple: A binary tree can be represented in (1 + 2 · #nodes) bits.
One bit is used to encode whether the root node exists. Then, for every ex-
isting node, two bits are used: one bit for each of the two branches that may
spring from it. The bit is 0 if there is no such branch, and 1 if there is such
a branch. There are a few options to order the bits; we choose for ‘breadth-
first’ order: that is the order in which a breadth-first search algorithm would
visit the nodes.5 The binary strings that stem from this encoding scheme are
self-delimiting.

The binary hash prefix trees we use are a specific subset of all possible bi-
nary trees, because the depth of the binary hash prefix trees is bounded by
the size l of the hash values. This means that binary hash prefix trees can be
encoded even more efficiently: the nodes that are at depth l cannot have any
branches springing from it.6 Therefore nodes at depth l need zero bits for their
encoding. Also, when we assume that binary hash prefix trees are nonempty,
we can omit the bit for the root node. Using this coding scheme, a binary hash
prefix tree with maximum depth l can be encoded in this number of bits:

2 · (#nodes−#nodes at depth l)

Table 10.1 illustrates our binary hash prefix tree coding scheme for the sets
given in Figure 10.1.

5 This is sometimes called ‘level-order traversal’.
6 We adhere to the convention that we consider the root node of a tree to be at depth 0.

148 Chapter 10. Many-to-many Protocols (T-2)

message meaning
ask(p1) A principal asks the other player to look whether he has

any secrets which have a hash value that starts with p1

refuse(p1) A principal tells the other player he will not prove pos-
session of any secrets whose hash value starts with p1

challenge(h1, C) A principal asks the other player to prove possession of
a secret with hash value h1, using the challenge C

prove(h1, p2) A principal partially proves possession of a secret,
identified by h1, by presenting the prefix p2.

TABLE 10.2: Basic messages used in the T-2 protocol. The prefixes can be of
any length between 0 and l (where l is the length of the hash value, a security
parameter).

10.2 Specification of the T-2 Protocol

The prerequisites of the T-2 protocol are the same as the prerequisites of the T-1
protocol, given in Section 9.1. Here, we will mainly describe the parts of the
T-2 protocol that differ from the T-1 protocol.

The T-2 protocol is a protocol for two principals, which we will call
Alice (A) and Bob (B). They have their respective knowledge bases KBA and
KBB . They want to determine the intersection KBA ∩ KBB without leaking
any information on the items outside of the intersection KBA ∩KBB . Here we
assume Alice and Bob want to mutually prove possession of the items in the
intersection KBA ∩ KBB , but the protocol can easily be adjusted to allow for
a unidirectional proof. Also, we adopt the setting that A and B have estab-
lished a shared secret nonce N , and that no encryption is used. The protocol
can easily be adjusted to encryption instead of a nonce.

Both players know one another’s names, A and B. They have established
a common shared secret nonce N , and computed the hash H(IQ, N) for each
IQ ∈ KBQ. The length of the hash values used in the protocol is l bits. These
hash values are stored in a binary prefix tree, with the corresponding files at
the leaf nodes. Since hash values have an equal length, all leaf nodes in the
prefix tree are at depth l.

The basic messages that are exchanged in the T-2 protocol are listed in Ta-
ble 10.2.7 Note that sending a message of the form refuse(p1) is an explicit
refusal: the principal that sends this message states that he does not have any

7 It is easy to see that the basic messages of the T-1 protocol are special cases of these messages:

• ask(h1) is a special case of ask(p1) where the length of p1 is equal to l.
• halt is a special case refuse(p1) where the p1 is of zero length.
• challenge(C) is s special case of challenge(h1, C) where h1 is equal to the h1 of the

previously sent ask(h1) message.
• prove(h2) is a special case of prove(h1, p2) where h1 is equal to the h1 of the previously

sent ask(h1) message and the length p2 is equal to l.

10.2. Specification of the T-2 Protocol 149

secrets with hash prefix p1 of which he is willing to prove possession in this
protocol run. Conversely, sending a message of the form ask(p1) is not an ex-
plicit confirmation: the principal that sends this message may have not a single
secret with hash prefix p1 of which is he willing to prove possession in the cur-
rent protocol run.

One might think that sending a message of the form ask(p1) should be an ex-
plicit confirmation, but this is neither necessary nor sensible. It is not necessary
because the only convincing confirmation is a prove(h1, p2) message where p2

meets certain criteria. It is not sensible because one cannot verify whether the
player sending the ask(p1) message actually has a message with hash prefix p1.

A run of the T-2 protocol consists of many subprotocols. There are two
types of subprotocols: one for determining the approximation KBAB? of the
intersection KBA ∩KBB (described in Section 10.2.1), and one for performing
the mutual proof of possession of the elements in the intersection KBA ∩KBB

(described in Section 10.2.2).
In the text, ε, p, pQ, h, hn and s denote binary strings, and · denotes string

concatenation. The empty string is denoted as ε. When applied to numbers, ·
denotes multiplication. The length (in bits) of the hash values is l, which is the
same for all hash values. The length (in bits) of the challenges is lc, which is the
same for all challenges.

10.2.1 Subprotocol for Determining Intersection

The subprotocol for determining the approximation KBAB? of the intersection
of KBA and KBB takes a recursive divide-and-conquer approach. By means
of messages, the domain of possible mutually owned files is divided into a
number of smaller domains, and for each of these domains a new ‘subprotocol’
is started. By means of recursion, these domains get smaller, and eventually
the players either state that they do not have files within the domain, or the
domain contains only a single file. In the latter case, a subprotocol for proving
possession is started (described in Section 10.2.2).

A subprotocol is started by a player sending an ask message, which is typ-
ically ask(ε). When a player (let us say Alice) sends a message ask(p) with
length(p) < l, the other player (let us say Bob) is obliged to respond with a set
of messages Rp such that Bob gives a full account of the domain denoted by p.
Roughly, for every part of the domain, Bob has to tell whether he has secrets
with the corresponding hash prefix. The amount of detail in the response of
Bob is hardly restricted. The only constraint for Bob is that if Bob does not
refuse having any secrets in the domain, his description has to be more detailed
than the question of Alice. How much more detailed it will be, is up to Bob to de-
cide. (A special case of the protocol, which we will introduce shortly, is where
the amount of extra detail is fixed.)

More formally, a response set is a set Rp = {M |M = ask(p · s) or M =
refuse(p · s)}, such that there is a set Sp of binary strings which satisfies the
following properties:

150 Chapter 10. Many-to-many Protocols (T-2)

Sp = Sask
p ∪ Srefuse

p , (10.1)

Sask
p = {s|ask(p · s) ∈ Rp}, (10.2)

Srefuse
p = {s|refuse(p · s) ∈ Rp}, (10.3)

Sask
p ∩ Srefuse

p = ∅, (10.4)

∀s ∈ Sask
p : length(s) ≥ 1, (10.5)

∀s ∈ Srefuse
p : length(s) ≥ 0, (10.6)

∀s ∈ Sp : length(s) ≤ (l − length(p)), (10.7)
∀s ∈ Sp : ¬∃s′ ∈ Sp : ∃s′′ ∈ {0, 1}∗ : s = s′ · s′′, (10.8)

∀h ∈ {0, 1}l : ∃s ∈ Sp : ∃s′′ ∈ {0, 1}∗ : h = s · s′′. (10.9)

Thus, the binary string p is suffixed with a number of strings s. Some of
the suffixes correspond to ask messages (10.2), and some to refuse messages
(10.3). There are no suffixes which are used in an ask message and in a refuse
message simultaneously (10.4). Suffixes which are part of an ask message have
minimum length one (10.5), and suffixes which are part of a refuse message
have minimum length zero (10.6).

When all suffixes are taken together into Sp (10.1) the following hold: Every
suffix is length-bounded by l− length(p) (i.e., length(p ·s) ≤ l) (10.7). There are
no two suffixes such that one suffix is a prefix of the other suffix (10.8). Every
binary string of length l has a prefix in Sp (10.9).

Note that within a refuse message, s may be of zero length, but not in an
ask message. If an s of zero length would be allowed in an ask message, there
would be no guarantee that the T-2 protocol would ever terminate: every ask
message could be answered with exactly the same message, creating an infinite
loop.

Because both players know what messages they send, and all messages sent
are assumed to arrive, both players can detect whether the protocol has termi-
nated, i.e., whether all obligations have been met. The most efficient protocol
run possible for determining the intersection is a run in which both players
only send ask(p1) messages if they indeed possess secrets whose hash value
has the prefix p1, and send refuse(p1) messages otherwise. This strategy can
however not be enforced.8

To illustrate how a collection of subprotocols establishes the intersection of
two knowledge bases, let us suppose that hash values are only four bits long,
A and B have restricted themselves to strings s of length 1. Moreover, suppose
that A possesses files with prefixes 0111, 1001 and 1010, and B possesses files
with prefixes 0001, 1010, 1011 and 1101. These sets correspond with the sets
KBA and KBB in Figure 10.1. Within this context, Table 10.3 shows how the
protocol may develop.

8 That is, enforcing such a strategy would result in a far less efficient protocol, while guaranteeing
protocol efficiency would be the purpose of enforcing the strategy.

10.2. Specification of the T-2 Protocol 151

ste
p

play
er

p messages (Rp) message meaning
1 A {ask(ε) } I’ve got some secrets whose prefix is ε.
2 B ε {ask(0) , I have got some secrets with prefix 0

ask(1) } and some with prefix 1.
3 A 0 {refuse(00) , I do not have secrets with prefix 00,

ask(01) } but I do have some with prefix 01;
1 {ask(10) , moreover, I have secrets with prefix 10,

refuse(11) } but I don’t have any with prefix 11.
4 B 01 {refuse(010) ,

refuse(011) }

}
Sorry, no secrets with prefix 01 here,

10 {refuse(100) , also no secrets with prefix 100,
ask(101) } but indeed some with 101 here.

5 A 101 {ask(1010) , Some secrets with prefix 1010,
refuse(1011)} but none with 1011 here.

TABLE 10.3: A sample run of interleaved subprotocols for establishing the in-
tersection. In the message meaning column, ‘some’ should be read as ‘zero or
more’, and ‘secret with prefix’ should be read as ‘secret with hash value with
prefix’.

It can be seen that A and B in turn increase the prefixes in their messages by
one bit. Every ask(p1) message obliges the opposing player to respond. More
specifically, step 2 is a response to step 1, step 3 contains two responses to step
2, step 4 contains two responses to step 3, and finally step 5 is a response to the
last part of step 4. Step 5 should lead to a subprotocol for mutually proving
possession of the file with prefix 1010. In course of the protocol run, A has
said she does not possess files whose hashes start with either 00, 11 or 1011,
and B has said he does not possess files whose prefixes start with either 010,
011 or 100. Thus, 9/16 of the full hash domain has been refused by A, and
6/16 by B. There remains 1/16 of the domain of which neither player has
refused possession, though the subprotocol for determining intersection has
terminated. This means that this remaining 1/16 part of the domain denotes
possible candidates KBAB? for actual list intersection. For each element in the
remaining set, a subprotocol for proving possession must be invoked. In this
case, the remaining set contains only one hash value, 1010.

The protocol run shown in Table 10.3 can also be depicted as a binary tree
that grows as the protocol proceeds. Figure 10.4 shows this binary tree. The
binary tree after protocol execution (the rightmost one) closely resembles the
hash value prefix tree that belongs to KBA ∩ KBB , shown at the right of Fig-
ure 10.1.

The protocol states shown in Figure 10.4 can also be depicted as colored sur-
faces, which is done in Figure 10.2. The whole surface denotes the whole set
Ω. As the protocol progresses, the structure of the surface becomes finer. Light
gray blocks denote parts of the domain for which Alice has sent a refuse mes-

152 Chapter 10. Many-to-many Protocols (T-2)

1 2 3 4 5

FIGURE 10.2: Interleaved subprotocols for establishing the intersection, shown
as a colored surface, with l = 4, |KBA| = 3, |KBB | = 4, |KBA ∩ KBB | = 1.
The protocol run depicted here corresponds with the protocol run shown in
Table 10.3 and Figure 10.4. See the text for explanation.

FIGURE 10.3: Interleaved subprotocols for establishing the intersection, shown
as a colored surface, with l = 16, |KBA| = 40, |KBB | = 40, |KBA ∩KBB | = 10.
See the text for explanation.

10.2. Specification of the T-2 Protocol 153

1q 2qq q0�
��

1Z
ZZ

3qq q0�
��

1Z
ZZ

× ×q q 0

1J
J

4qq q0�
��

1Z
ZZ

× ×q q 0

1J
J

qBB 1× × ×

5qq q0�
��

1Z
ZZ

× ×q q 0

1J
J

qBB 1× × × q��
0
×

TABLE 10.4: Interleaved subprotocols for establishing the intersection, shown
as a growing binary tree. The protocol run depicted here corresponds with
the protocol run shown in Table 10.3. Every ‘×’ corresponds with a refuse
message. Every node corresponds with an ask message. The leftmost tree,
which contains only the root node, corresponds with the protocol state after the
first message (ask(ε)). The rightmost tree corresponds with the protocol state
after completion of the protocol, when KBAB? = {1010} has been established.

sage. Dark gray blocks represent parts of the domain for which Bob has sent a
refuse message. White blocks represent parts of the domain for which neither
Alice nor Bob has sent a refuse message. The sizes of the blocks correspond
with the proportion of the domain that has been refused in the corresponding
message.

For a first impression of how the protocol scales up, and how this affects
the protocol state, Figure 10.3 shows the final state of a protocol where l = 16,
|KBA| = 40, |KBA| = 40, |KBA ∩ KBB | = 10, all suffixes s are of length 1 and
all hash values are randomly chosen.9

While meeting their protocol obligations, the participants have a lot of free-
dom, of which we mention a few important aspects:

1. It is not a protocol violation to send ask(p1) messages if the player actu-
ally does not have any secret IV ∈ KBV of which p1 is a hash prefix. The
player may ‘act as if’ he has some secrets which he in fact does not have.

2. The set Rp (sent in response to a message ask(p)) does not have to be
sent at once. It may be sent in parts, interleaved with other response sets
Rp′ . Parts of Rp may even be sent only after the opposing player has
performed some moves. This also means that the exact details of Rp can
be chosen in response to the opposing player’s future moves.

3. The length of the string s may be longer than 1. Thus, a player can choose
to surrender multiple bits of information to the opposing player within
one step.

These freedoms allow participants in the protocol to choose between a lot
of different strategies. In Section 10.3 we will elaborate on various strategies.

9 Because the hash values come from a cryptographic hash function, it is safe to assume such a
random distribution.

154 Chapter 10. Many-to-many Protocols (T-2)

The approximation KBAB? of the intersection KBA ∩ KBB is the set of
hash values p for which one of the players has sent a message ask(p) with
length(p) = l. It is guaranteed that every secret of which both Alice and Bob
are willing to mutually prove possession, has a corresponding hash value in
the set KBAB?. However, there is no guarantee that there are no bogus hash
values in the set KBAB?: hash values for which either Alice or Bob does not
know a corresponding secret.10 For every member of the set KBAB? a subpro-
tocol for proving possession has to be executed to determine whether the hash
value is bogus or not.

10.2.2 Subprotocol for Proving Possession

When the subprotocols for determining intersection have been completed,
Alice and Bob have constructed a set KBAB? of hash values for which it is
claimed that both Alice and Bob possess a secret with the corresponding hash
values. This set can be transformed into the set KBA ∩ KBB by application
of a subprotocol for proving possession to every element h1 ∈ KBAB?. If a
subprotocol is convincing for a principal Q, this principal considers the secret
I ∈ KBQ for which h1 = H(I,N) holds to be an element of the intersection
KBA ∩ KBB . Thus, the subprotocol for proving possession is a sifting on the
set KBAB?.

An instance of the subprotocol for proving possession is invoked when
within a subprotocol for determining intersection, a message ask(p) has been
sent, with length(p) = l. This ‘prefix’ p actually contains a complete hash value
h1. This hash value h1 refers to a unique secret I , and an instance of the sub-
protocol is purely dedicated to one specific secret. Essentially, the two players
give one another a NP-complete puzzle which they can only solve feasibly if
they indeed possess the secret. The solution is again a hash value, but now
for both players the hash value is different: the solutions to the puzzles prove
possession of the same file, but the puzzles and the answers themselves dif-
fer. Alice has to compute and show hA = H(I,N, A,CB), whereas Bob has to
compute and show hB = H(I,N, B, CA).

For running an instance of the subprotocol for proving possession, a prin-
cipal has to maintain seven state variables, which are listed in Table 10.5.

Every message of the subprotocol contains h1, to distinguish the messages
of the current subprotocol from other subprotocols. In the beginning of the
subprotocol, CA and CB are exchanged without further ado. Using these chal-
lenges, both players can compute hA

2 and hB
2 . Next, the players in turn send

one another prefixes of their proof messages mA and mB . In every step, the
prefix must be longer than the prefix sent in the previous step. If in the end of
the protocol it turns out that mA = hA and mB = hB , the players have indeed
mutually proven possession of the file denoted by h.

10 In extremely rare cases, it might happen that Alice and Bob want to mutually prove possession
of different secrets which have the same hash value. Such hash values are also included in
KBAB?.

10.2. Specification of the T-2 Protocol 155

var
iab

le

meaning
h1 the hash value that denotes the secret for which the subprotocol

has been invoked, h1 = H(I,N)
CA the challenge chosen by Alice
CB the challenge chosen by Bob
hA

2 the hash value that constitutes Alice’s proof, hA
2 = H(I, N, A,CB)

hB
2 the hash value that constitutes Bob’s proof, hB

2 = H(I,N, B, CA)
pA the proof message disclosed by Alice
pB the proof message disclosed by Bob

TABLE 10.5: State variables in a subprotocol for proving possession

More formally, we arrive to the following description of the subprotocol for
proving possession:

• When a principal Q sends a message ask(p), with length(p) = l, the
player is obliged to also send a message challenge(h1, CQ) with h1 = p.
The challenge CQ is of fixed length and its contents may be freely chosen
by the sender Q.

• When a principal Q receives a message challenge(h1, C), and he has not
yet sent a message challenge(h1, CQ) (that is, a challenge for the same
value of h1), this player is obliged to send two messages:
challenge(h1, CQ) where CQ may be freely chosen by the sender, and
proof(h1, pQ) where pQ is a binary string with length(pQ) ≤ l.

• When a player receives a message proof(h1, p), with length(p) ≤ l, then
he has to respond with a message proof(h1, pQ), with pQ = p′Q · s, where
p′Q is the last prefix the principal Q has disclosed within the current sub-
protocol (or ε if the player has not yet sent a proof message within the
current subprotocol). There is a required minimum length of pQ, which
depends on p. If length(p) = l, then pQ should be of length l as well. Oth-
erwise, it should be the case that length(pQ) > length(p). The subprotocol
terminates when both players have sent a prefix of length l.

What actually happens within this subprotocol, is that the players in turn
disclose a few bits of the value they must compute, the solution to their NP-
hard puzzle. In each step, the prefix shown must be at least one bit longer than
the last one shown by the opposite player.

Similar to the subprotocol for determining intersection, the hash values are
disclosed in parts, more specifically in ever longer prefix strings. As in the pro-
tocol for determining intersection, it is important to appreciate what informa-
tion is actually transferred within the messages. The bit strings pA and pB may
be equal to hA

2 and hB
2 respectively, but this is not required. Of course, if these

values are (pairwise) not equal, this implies that the secrets that correspond to
h1 will not be considered an element of KBA ∩KBB .

156 Chapter 10. Many-to-many Protocols (T-2)

ste
p

play
er

messages message meaning
1 A {ask(1010) , Let’s run the protocol for 1010,

challenge(1010, 0110)} I challenge you, CA = 0110.
2 B {challenge(1010, 1110), I challenge you, CB = 1110,

proof(1010, 1) } the first bit of my proof is 1.
3 A {proof(1010, 01) } The first two bits of my proof are 01.
4 B {proof(1010, 110) } The first three bits of my proof are 110.
5 A {proof(1010, 0100) } The four bits of my proof are 0101.
6 B {proof(1010, 1101) } The four bits of my proof are 1101.

TABLE 10.6: A sample run of the subprotocol for proving possession. The
hash value secret for which possession can be proven in this protocol is 1010.
For completeness, the ask message leading to the protocol is included in the
first step.

To illustrate how a single subprotocol works, let us again suppose that hash
values are only four bits long, and A has sent ask(1010) to B. Table 10.6 shows
how the protocol may develop. At the end of the protocol run the full ‘proofs’
pA and pB are known: pA = 0100 and pB = 1101. Whether these ‘proofs’ are
convincing depends on whether pA = hA

2 and pB = hB
2 .

Again, the principals have a lot of freedom in how they act in the protocol:

1. The players are not obliged to actually send prefixes of the actual proof
of possession; they are allowed so send any information they like, as long
as they adhere to the syntactical rules.

2. The players may increase the length of their prefixes faster than the min-
imum requirement.

These options leave room for many strategies. Assuming that the players
want to prove possession of the secret to one another and want to make sure
they get a reciprocal proof in return, there is an optimal strategy which is very
simple. As soon as both challenges are known, compute hA and hB . As long
as the other player’s shown prefix is a prefix of the proof he should send, re-
ply ‘truthfully’ by sending the prefix of your own proof, which is only one bit
longer than the other player’s last prefix. As soon as the other player’s shown
prefix is not a prefix of the expected proof, stop sending parts of your own
proof, but append random noise to your previously sent prefixes until the pro-
tocol terminates.

This strategy ensures that if the other player chooses to abort the protocol,
the other player only has an advantage of one bit. Also, if the other player does
not know the secret IV , your proof of possession of the secret is not communi-
cated to the other player (or at most one bit of it). When both players adopt this
strategy, they will obtain a mutual proof when both players possess the secret
IV in question. As such, this strategy guarantees fairness (see page 23).

10.3. Making the Protocol Efficient by Restrictions 157

10.3 Making the Protocol Efficient by Restrictions

The protocol description leaves a lot of freedom to principals participating in
the protocol (see the lists on pages 153 and 156). This means that the principals
can develop and use various strategies while engaging in the T-2 protocol. For
example, a reluctant strategy is to never send refuse messages. A cooperative
strategy is to send send as many refuse messages as possible, while ‘merging’
refuse messages of adjacent prefixes.11

Due to this large amount of freedom in the protocol specification it is im-
possible to give precise measurements of the communication complexity of the
protocol. Moreover, the freedom itself increases the communication complex-
ity: many possible protocol actions imply the need for many bits to encode
one single protocol action. In this section, we will impose restrictions on the
protocol that allow (1) efficient encoding of the protocol actions and (2) precise
computations and measurements of the communication complexity (given in
Section 10.4).

The restrictions we impose are the following:

1. It is assumed Alice starts the protocol with the message ask(ε)

2. In the subprotocols for determining intersection:

(a) All suffixes s are of length 1.

(b) All sets Rp are sent in order of increasing length of p.

(c) All sets Rp with equal length of p are sent in the lexicographical
order of p.

3. In the subprotocols for proving possession:

(a) The challenges are sent as soon as possible in the lexicographical
order of h1.

(b) For every h1, the first proof(h1, pQ) message, pQ is of length 1. These
first proofs are sent as soon as possible, but after all challenges have
been sent.

(c) All suffixes s are of length 2, except the last suffix, which is of length
1.

(d) All messages proof(h1, pQ) are sent in order of increasing length of
pQ.

(e) All messages proof(h1, pQ) with equal length of pQ are sent in the
lexicographical order of h1.

11 That is, it is not the sheer number of messages that counts, but the proportion of the domain
Ω for which a principal sends refuse messages. If this proportion is maximal, the strategy is
called cooperative.

158 Chapter 10. Many-to-many Protocols (T-2)

messages (Rp) encoding
{refuse(p · 0), refuse(p · 1)} 00
{refuse(p · 0), ask(p · 1)} 01
{ask(p · 0), refuse(p · 1)} 10
{ask(p · 0), ask(p · 1)} 11

TABLE 10.7: Encoding for sets Rp where ∀s : |s| = 1 and p may be omitted.
Every refuse is encoded as a 0, and every ask as a 1.

These restrictions have a huge impact on the protocol runs: The first mes-
sage message can be omitted (1). Bob (Alice) sends only sets Rp where the
length of p is odd (even) (2a). The principals send all their sets Rp out as soon
as possible (2b), which reduces the number of communication steps for deter-
mining intersection down to l. The principals send their sets Rp in a strictly
imposed order (2c).

The challenges are sent in a strictly imposed order (3a). Bob (Alice) sends
only proofs pA (pB) where the length of pA (pB) is odd (even) (3b and 3c). The
principals send all their proofs pQ out as soon as possible (3b and 3d), which
reduces the number of communication steps for proving possession down to
l + 1. The principals send their proofs pQ in a strictly imposed order (3e).

As a result, the total number of communication steps in a protocol run
where possession is proven is 2 · l + 1. If the set KBAB? is empty, the total
number of communication steps is at most l. Moreover, as a result of the im-
posed order, it is always possible to reconstruct for which prefix p or hash value
h1 a message is bound to arrive. Thus, sending the prefix p or the hash value
h1 itself is redundant.

In the subprotocols for determining intersection, the suffixes s are of length
1, and the prefix p can be omitted from the message sets Rp. As a result, we can
encode every set Rp in only two bits. This is shown in Table 10.7.

In the subprotocols for proving possession, h1 can also be omitted because
of the ordering of the messages. Also, sending the full prefix pQ in every mes-
sage is redundant, because a large part of the prefix has already been sent in a
previous message. It is only needed to send the suffix s.

Using these coding schemes, the protocols shown in Tables 10.3 and 10.6
can be merged into one single protocol run, shown in Table 10.8. It is a run of
the restricted T-2 protocol on the sets KBA = {0111, 1001, 1010} and KBB =
{0001, 1010, 1011, 1101}. The principals are cooperative, they send as many
refuse messages as possible. The column ‘message’ denotes the actual com-
municated bits. Observe that from the bits in the ‘message’ column, it is pos-
sible to reconstruct the columns p and h1, and with help from Table 10.7 it is
possible to reconstruct the decoded messages. Moreover, observe that the first
twelve bits communicated in the protocol (110110000110) correspond exactly
to the binary encoding (explained in Section 10.1) of the prefix tree that is con-
structed in the protocol (shown at the right of Figure 10.4).

10.4. Determining Communication Complexity 159

ste
p

play
er

p h1 m
es

sa
ge

decoded message
0 A {ask(ε)}
1 B ε 11 {ask(0), ask(1)}
2 A 0 01 {refuse(00), ask(01)}

1 10 {ask(10), refuse(11)}
3 B 01 00 {refuse(010), refuse(011)}

10 01 {refuse(100), ask(101)}
4 A 101 10 {ask(1010), refuse(1011)}

1010 0110 challenge(1010, 0110)
5 B 1010 1110 challenge(1010, 1110)

1010 1 proof(1010, 1)
6 A 1010 01 proof(1010, 01)
7 B 1010 10 proof(1010, 110)
8 A 1010 00 proof(1010, 0100)
9 B 1010 1 proof(1010, 1101)

TABLE 10.8: A sample protocol run of the restricted T-2 protocol, efficiently
encoded. Only the bits in the column ‘message’ are communicated. From it,
the column ‘decoded message’ can be reconstructed.

10.4 Determining Communication Complexity

Now that we have fully explained the T-2 protocol and its restricted version,
we want to establish the communication complexity of the restricted T-2 pro-
tocol. Some steps in this process are simple, some are rather complicated. Our
approach is simple: we compute the simple parts of the complexity, and we
perform some experiments to estimate the complicated parts of the complex-
ity.

Although in the previous section, we have restricted the freedom of the
principals dramatically, the principals still have room for various strategies.
We have already mentioned the two most important strategies: the cooperative
and the reluctant strategy. When applied to the restricted T-2 protocol, these
strategies are implemented as follows:

cooperative Choose the sets Rp in such a way that the number of ones in the
encoding of Rp shown in Table 10.7 is minimized. This leads to an inter-
section prefix tree of minimal size.

reluctant Choose the sets Rp in such a way that the number of ones in the
encoding of Rp shown in Table 10.7 is maximized. This leads to an inter-
section prefix tree of maximal size.

Both Alice and Bob can independently choose their strategy. There are more
strategies than the cooperative and the reluctant strategies, but all other strate-
gies fall complexity-wise ‘in between’ the complexities of these two strategies.

160 Chapter 10. Many-to-many Protocols (T-2)

strategy upper bound
size of the binary rep. communication

Alice Bob of the prefix tree |KBAB?| complexity (bits)

coop. coop. 2 · l ·min(|KBA|, |KBB |) |KBA ∩KBB |
2·l·min(|KBA|,|KBB |)
+2·(l+lc)·|KBA∩KBB |

coop. rel. 4 · |KBA| · l 2 · |KBA| 2 · |KBA| · (3 · l + lc)
rel. coop. 4 · |KBB | · l 2 · |KBB | 2 · |KBB | · (3 · l + lc)
rel. rel. 2 · (2l − 1) 2l 2l+1 · (1 + l + lc)− 2

TABLE 10.9: The worst case communication complexity for the restricted T-2
protocol, depending on the strategies of Alice and Bob. The communication
complexity, shown at the right, is the size of the binary representation of the
prefix tree plus 2 · (l + lc) · |KBAB?|.

Therefore, it is sufficient to analyze these two strategies to form an impression
of how the communication complexity depends on the strategies chosen.

• If both Alice and Bob use the cooperative strategy a prefix tree of minimal
size is constructed. In the case of the running example of this chapter, this
corresponds to the tree shown at the right of Figure 10.4.

• If both Alice and Bob use the reluctant strategy, a prefix tree spanning the
full domain Ω is constructed. In the case of the running example of this
chapter, this corresponds to the tree shown at the left of Figure 10.1. The
size of this tree in binary encoding is 2 · (2l − 1).

• If Alice uses the cooperative strategy and Bob the reluctant strategy, a
prefix tree is constructed that closely matches the hash value prefix tree of
Alice. In the case of the running example of this chapter, this corresponds
to the tree shown under KBA in Figure 10.1. The size of this tree in binary
encoding is bounded by 4 · |KBA| · l.

• The case where Alice uses the reluctant strategy and Bob uses the coop-
erative strategy is symmetric to the previous case.

The total communication complexity of a protocol run is the sum of the
communication complexities of the subprotocols for determining intersection
and the subprotocols for proving possession. The former is precisely the size
of the binary encoding of the constructed tree; the latter is precisely 2 · (l + lc) ·
|KBAB?|, where l is the length of the hash values in bits, and lc is the length of
the challenges in bits.

The worst case communication complexities can be calculated rather easily.
The results are shown in Table 10.9. The only case for which the worst case
communication complexity is not so trivial is the case where both principals
use the cooperative strategy. The biggest prefix tree that can be constructed
in this setting occurs in case the prefix trees corresponding to KBA and KBB

overlap almost completely, in which case the size of the prefix tree of the inter-
section is just a little below 2 · l ·min(|KBA|, |KBB |). This is however extremely

10.4. Determining Communication Complexity 161

unlikely to actually happen, as the prefix trees belonging to the sets KBA and
KBB have a uniform random distribution.

For the settings where at least one of the principals uses the reluctant strat-
egy, the average communication complexity is equal to the worst case commu-
nication complexity. The average case communication complexity for the case
where both principals use the cooperative strategy can be expected to be much
lower than the worst case.

Observe that both principals can force the communication complexity to be
at most 2 · |KBQ| · (3 · l + lc) by using the cooperative strategy.

The average case communication complexity for the case where both prin-
cipals use the cooperative strategy can be derived mathematically, but this is
very complicated.12 So instead, we did some experiments to estimate the com-
munication complexity in this setting.

The communication complexity for the T-2 protocol consists of two contri-
butions:

• communication resulting from secrets that are shared
This communication is heavily influenced by |KBAB?|. For cooperative
principals |KBAB?| will be equal13 to |KBA ∩KBB |.

– communication in subprotocols for determining intersection
This is bounded by 2 · l · |KBAB?|.

– communication in subprotocols for proving possession
This is exactly 2 · (l + lc) · |KBAB?| bits.

• communication resulting from secrets that are not shared
This is only communication in the subprotocols for determining intersec-
tion. We estimated this experimentally.

When these contributions are added up, there will be a little bit of double
counting, as some communication in the subprotocols for determining inter-
section is due to both shared secrets and not-shared secrets.

To estimate the communication resulting from secrets that are not shared,
we performed an experiment in ten different conditions. The conditions differ
in the sizes of the sets KBA and KBB , and these are shown in Table 10.10. In
every condition, l = 256 and KBA ∩KBB = ∅. The hash values corresponding
to the sets KBA and KBB were taken randomly from the domain 2l where
every element had an equal probability. For every condition, the experiment
was performed 1000 times, and the number of bits communicated is recorded.

The results of the experiment are shown in Figure 10.4 and Table 10.11.
Table 10.11 reports for each of the conditions the minimum and maximum ob-
servations, the median, the average and the standard deviation, and also the
12 We have not yet succeeded in establishing a formula which expresses the communication com-

plexity in which we have sufficient confidence. Our gratitude goes to various people who have
tried to help us in finding this formula, most notably to Gerard te Meerman.

13 There is a negligible chance that |KBAB?| is larger than |KBA∩KBB |; in that case one or more
collisions of the hash function must have occurred.

162 Chapter 10. Many-to-many Protocols (T-2)

condition |KBA| |KBB | |KBA|
|KBB |

1 1 1 1
2 1 10 0.1
3 1 100 0.01
4 1 1000 0.001
5 10 10 1
6 10 100 0.1
7 10 1000 0.01
8 100 100 1
9 100 1000 0.1

10 1000 1000 1

TABLE 10.10: The ten conditions of the experiment to estimate the average
communication complexity of the restricted T-2 protocol with cooperative prin-
cipals. Every condition can be identified by two of the three variables |KBA|,
|KBB | and |KBA|

|KBB | .

bounds of the interval in which the middle 95% of the observations lie. Fig-
ure 10.4 is a density (local frequency) plot of the data.14

At first glance, the only conclusion that can be drawn is that larger sets lead
to more communication. At closer observation, one can see that there are peaks
at approximately 5,5, 55, 550 and 5500 bits that correspond to conditions where
|KBA|
|KBB | = 1, in increasing order of |KBA|. Similarly, there are peaks at approxi-

mately 13,6, 136 and 1360 bits that correspond to conditions where |KBA|
|KBB | = 0.1.

Also, there are peaks at approximately 23,4 and 234 bits that correspond to con-
ditions where |KBA|

|KBB | = 0.01. This suggests two findings:

1. An increase of a factor 10 in the sizes of both |KBA| and |KBB | leads to
an increase of a factor 10 of the communicated bits.

2. The fraction |KBA|
|KBB | influences the number of communicated bits.

To investigate these hypotheses, we divide the communication by the sum
of the set sizes, which gives us Figure 10.5 and Table 10.12. Figure 10.5 is a den-
sity plot15 of the communicated bits divided by |KBA|+|KBB |, and Table 10.12
gives descriptive statistics of the data (similar to Table 10.11). The conditions
have been re-ordered to highlight the structure that can be seen in Figure 10.5.

The findings are very clear:

14 Technically, Figure 10.4 is not a density plot. It is a density plot of the base 10 logarithm of the
observations with modified labels at the x-axis. The labels at the x-axis are 10x where it should
technically read x. In this way, the data plotted is easy to read, while the ‘visual surface’ for
each distribution is equal.

15 As opposed to Figure 10.4, Figure 10.5 is a ‘true’ density plot. The x-axis is in linear scale, and
the surfaces below the lines are both ‘visually’ and mathematically equal (i.e., equal to 1).

10.4. Determining Communication Complexity 163

|KBB | = 1
|KBB | = 10
|KBB | = 100
|KBB | = 1000

15
10

5
0

de
ns

it
y

1 5 10 50 100 500 1000 5000
bits ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸ 6

|KBA| = 1 10 100 1000

FIGURE 10.4: The number of communicated bits in the restricted T-2 protocol
with cooperative participants, shown as a compressed density plot.14 For every
distribution, |KBA| can be found by finding its peak, and looking straigt down
to where either a brace or an arrow is found. At the other side of the brace or
arrow, |KBA| is printed.

|KBA| |KBB | min −95 med +95 max avg stdev
1 1 4 4 4 14 22 5,97 2,77
1 10 4 6 12 24 30 13,67 4,24
1 100 12 16 22 34 40 23,47 4,40
1 1000 24 24 34 44 52 33,38 4,61

10 10 20 34 56 78 94 55,67 11,75
10 100 82 104 136 168 196 135,82 16,95
10 1000 152 200 234 268 300 233,84 18,25

100 100 438 484 552 620 660 551,16 35,26
100 1000 1180 1256 1356 1470 1534 1358,29 54,01

1000 1000 5142 5298 5510 5736 5860 5508,95 110,98

TABLE 10.11: Descriptive statistics of the number of communicated bits in the
restricted T-2 protocol with cooperative participants. For every condition, 1000
experiments were done. Shown are the minimum and maximum observations
(min, max), the bounds of the interval where the middle 95% of the obser-
vations lie (−95, +95), the median andaverage (med, avg), and the standard
deviation (stdev).

164 Chapter 10. Many-to-many Protocols (T-2)

|KBB | = 1
|KBB | = 10
|KBB | = 100
|KBB | = 1000

15
10

5
0

de
ns

it
y

0 1 2 3 4
bits

|KBA|+|KBB |

6︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
= |KBA|

|KBB |0,001 0,01 0,1 1

FIGURE 10.5: The number of communicated bits per compared secret in the
restricted T-2 protocol with cooperative participants, shown as a density plot.
For every distribution, |KBA|

|KBA| can be found looking straight beneath its peak.

|KBA|
|KBB | |KBB | min −95 med +95 max avg stdev

0,001 1000 0,024 0,024 0,034 0,044 0,052 0,034 0,005
0,01 100 0,119 0,158 0,218 0,317 0,396 0,232 0,044
0,01 1000 0,151 0,198 0,232 0,265 0,297 0,232 0,018
0,1 10 0,364 0,545 1,091 2,182 2,727 1,243 0,386
0,1 100 0,745 0,945 1,236 1,527 1,782 1,234 0,154
0,1 1000 1,073 1,142 1,233 1,337 1,395 1,235 0,049
1 1 2,000 2,000 2,000 7,000 11,000 2,986 1,386
1 10 1,000 1,700 2,800 3,900 4,700 2,783 0,588
1 100 2,190 2,420 2,760 3,090 3,300 2,756 0,176
1 1000 2,571 2,649 2,755 2,868 2,930 2,755 0,055

TABLE 10.12: Descriptive statistics of the number of communicated bits per
compared secret in the restricted T-2 protocol with cooperative participants.
For every condition, 1000 experiments were done. Shown are the minimum
and maximum observations (min, max), the bounds of the interval where the
middle 95% of the observations lie (−95, +95), the median and average (med,
avg), and the standard deviation (stdev).

10.4. Determining Communication Complexity 165

upper bound on average
protocol communication complexity (bits)

iterated T-1 (l + 1) · |KBA|+ (2 · l + 2 · lc) · |KBA ∩KBB |
restricted T-2 with

cooperative principals 2, 76 · |KBA ∪KBB |+ (4 · l + 2 · lc) · |KBA ∩KBB |

TABLE 10.13: Bounds on average communication complexities of the T-1 and
the T-2 protocol.

1. For every fraction |KBA|
|KBB | , the average amount of communicated bits per

|KBA|+|KBB | is practically identical. In the worst case, where |KBA|
|KBB | = 1,

the average communication complexity is approximately 2, 76 bits per
|KBA|+ |KBB |.

2. When the fraction |KBA|
|KBB | decreases (i.e., the difference between |KBA| and

|KBB | grows), the average amount of communicated bits per |KBA| +
|KBB | decreases.

3. As |KBB | (and |KBA|) grow larger, the standard deviation clearly de-
clines.

This is good news. The first finding essentially means that the communica-
tion complexity of the restricted T-2 protocol with cooperative principals is lin-
ear in |KBA|+|KBB |. The second finding means that if |KBA| and |KBB | are of
dissimilar size, the efficiency of the protocol increases; the average communica-
tion complexity is always below (approximately) 2, 76 · 2 ·max(|KBA|, |KBB |).
The third finding entails that the protocol scales up very well: as the set sizes
increase the actual communication complexity for a particular run will be very
close to the expected communication complexity (which is linear in |KBA| +
|KBB |).

Table 10.13 gives a first impression of the average communication complex-
ity of the restricted T-2 protocol with cooperative principals. Also, the commu-
nication complexity of the alternative, iteration of the T-1 protocol, is shown.

For the T-1 protocol, the actual communication complexity is exactly the
formula given. The principals could still optimize the complexity, if they first
establish whether |KBA| or |KBB | is smaller, and change roles in case |KBA| >
|KBB |. With this optimization, the term (l + 1) · |KBA| can be replaced with
(l+1)·min(|KBB |, |KBB |), at the cost of an extra term that signifies the commu-
nication complexity of the protocol that determines whether |KBA| > |KBB | is
the case.

For the restricted T-2 protocol with cooperative principals, with |KBA| =
|KBB | the average communication complexity is slightly lower than the for-
mula given (due to double counting of some communicated bits). If |KBA| 6=
|KBB |, the average communication complexity improves even more. When
min(|KBA|,|KBB |)
max(|KBA|,|KBB |) = 0, 1, the factor 2,76 reduces to approximately 1,24. When

166 Chapter 10. Many-to-many Protocols (T-2)

min(|KBA|,|KBB |)
max(|KBA|,|KBB |) = 0, 01, the factor 2,76 reduces to approximately 0,23. The
precise relation between the fraction and the factor remains subject to future
research. Nevertheless, it is not too hard to see that the factor decreases so
fast that the average communication complexity of the T1 protocol is always
larger than the average communication complexity for the restricted T-2 proto-
col with cooperative principals.16

10.5 Conclusion

In this chapter, we have generalized the T-1 protocol into the T-2 protocol that
does many-to-many intersection. Thus, using the T-2 protocol, the following is
possible, in an efficient way17:

• Airline carriers can allow the authorities of (for example) the United
States of America to check whether wanted terrorists are on board of the
airplane without disclosing the identities of the non-criminals.

• Police officers can compare the electronic dossiers of their investigations
without relying on a trusted third party (i.e., the VROS, see Section 1.5).

• Intelligence agencies can compare their secrets without disclosing them.

In cases where the set sizes |KBA| and |KBB | are public information, the
T-2 protocol is just as secure as the T-1 protocol. The T-2 protocol works by
means of two principals disclosing hash value prefixes, in increasing length.
In this way, they can efficiently and adaptively survey the complete domain of
possible secrets.

The T-2 protocol leaves room for various strategies to be used by the prin-
cipals. Due to the security of the protocol, there is no informational benefit
in choosing one strategy over the other. The chosen strategy influences the
communication complexity. If the T-2 protocol is restricted in a particular way,
efficient coding is used, and both principals use a particular strategy, then the
protocol satisfies the fairness condition.

16 There are two ways in which this can be seen:

1. If iterated T-1 would be faster than T-2, this would mean that in the restricted T-2 protocol
with cooperative principals, the branches of the tree that correspond with the KBA would
‘escape’ the intersection prefix tree at a depth greater than l. That would mean that many
collisions of the cryptographic hash function would occur. The chance of this happening is
negligible, and is certainly nowhere close to average case behavior.

2. Observe that the communication complexity of the T-2 protocol where Alice uses the co-
operative strategy and Bob the reluctant strategy (shown in Table 10.9), is equal to the
communication complexity for the case where both principals use the cooperative strat-
egy and KBB = Ω (Bob holds the whole domain). That communication complexity,
2 · |KBA| · (3 · l + lc) is only larger than (l + 1) · |KBA|+ (2 · l + 2 · lc) · |KBA ∩KBB | by
a constant factor. (If l = lc, the factor is 8/5). But as KBB is only a sparse subset of Ω, this
factor will be defeated.

17 See Section 8.1 for a detailed description of these application areas.

10.5. Conclusion 167

Let us see how the T-2 protocol works:

1. How are the individual secrets of the players protected?
The T-2 protocol is a parallel composition of the T-1 protocol. See Sec-
tion 9.5 for a summary of why the T-1 protocol protects the secrets of the
players.

2. Is the number of secrets that a player possesses hidden from the other player?
No. If a player wants to infer how many secrets the other player has,
and the other player plays the cooperative strategy18, then the first player
can play the reluctant strategy to find out how many secrets the other
player has. However, when both players play the reluctant strategy, the
communication complexity (and thus the run time) of the T-2 protocol is
exponential.
In the analysis of the T-2 protocol, one should consider the set sizes |KBA|
and |KBB | to be public knowledge.

3. How can the players enforce fairness?
The proofs of possession are disclosed bit by bit, turn by turn. Both play-
ers know which bits should be sent by the other player. As soon as the
bit sent by the other player is different from the expected bit, a player
stops sending his own proof, and starts sending random noise bits. In
this manner, the advantage that a player can get over the other player is
limited to one bit of the proof.

4. How is the communication complexity optimized?
The hash values of the secrets that are only known to one player, are only
partially communicated. Of these hash values, only a prefix is commu-
nicated that is just long enough for the ‘ignorant’ player to determine he
does not possess a secret corresponding to the hash value prefix.
Moreover, all hash values and prefixes are compressed by representing
them in a tree structure.

5. How many communication steps are required?
When the players have a secret in common, the number of communi-
cation steps is 2 · l + 1, where l is the length of the hash values in bits.
When the players have no secrets in common, the number of communi-
cation steps depends on the number of secrets they possess; in practice
the number of communication steps will be much smaller than l.

6. How many bits need to be communicated?
For every secret that is possessed by only one player, on average at most
three bits are communicated. For every secret that is possessed by both
players, 4 · l + 2 · lc bits are communicated, where l is the length of the
hash values in bits, and lc is the length of the challenge.

18 The cooperative and reluctant strategy are explained in Section 10.4.

Part V

Conclusion

169

Chapter 11

Conclusion

In this thesis, research is reported that is of both fundamental and practical
value. Fundamentally, we show that a number of theoretical problems can be
solved. Our solutions to these fundamental problems can be applied to resolve
practical real-world problems.

In the following sections, we will summarize our results and their rele-
vance. Directions for future research are also given.

11.1 Information Designators

Linking information which stems from various sources, information integra-
tion, is by itself a difficult problem. Even within ‘relaxed’ conditions where
no data has to be kept secret, linking existing information sources consistently
and reliably is hard. In practice, information integration does not enjoy relaxed
conditions: the information is differently encoded, inconsistent and asynchron-
ously updated. To cope with these conditions, current techniques for informa-
tion integration take essentially the approach to expose as much information
as deemed possibly helpful.

If information has to be kept secret, however, it seems that one faces the
choice between either not integrating the information, or sacrificing confiden-
tiality. Of course, if one has a secret, the best way to keep it secret is to tell
it to nobody. But if one has to tell it to some people, one would certainly like
those people to protect the secret. Current information integration technology
cannot offer such guarantees.

In Chapter 7 we analyze this problem and identify two causes for this prob-
lem:

1. When information is integrated across databases, this is done by literally

171

172 Chapter 11. Conclusion

copying information from one database to the other (or a process which
is to some extent equivalent to this). We call this the raw data problem.

2. The ontologies of the databases that are to be integrated overlap. With the
integration of the ontologies, insufficient care is taken to identify which
contributor ‘owns’ (is responsible for) the information that overlaps.

We propose a solution to these problems which may seem very simple, but
has in effect intricate, if not dramatic effects. The solution is to never replicate
raw data, and to always refer to the original author (‘owner’) of the information.
When phrased in a slogan, it becomes:

Don’t propagate, but link!

Instead of using raw data, information designators are used. An information
designator is a pseudonym for a piece of information. Owners of information
may use any number of pseudonyms for any piece of information. They can
precisely control the extent to which others can use the information designators
to reason about and recombine the information.

The information designator is a new concept, and is not an instantly appli-
cable technique. But as a proof of concept, it demonstrates that linking infor-
mation and protecting it against dissemination can go hand in hand.

The information designator approach needs extension in future research in
the following ways:

• The information designator has to be fleshed out. Prototype production
systems have to be built in order to reveal yet unknown intricacies of the
approach. Basic understanding of precisely what bottlenecks will appear
when the information designator systems are scaled up have to be iden-
tified and addressed.

• For practical ‘real-world’ deployment, an elegant way has to be found for
incorporating information that is not stored using the information desig-
nator approach.

11.2 Knowledge Authentication

When one wants to compare two pieces of information, it may seem that it is
necessary to have the two pieces of information available at hand. Consider
the following problem “Comparing Information Without Leaking It” (CIWLI)
[FNW96]:

Two players want to test whether their respective secrets are the
same, but they do not want the other player to learn the secret in
case the secrets do not match.

In Chapter 8, we identify a number of variations of the problem, depending on
the following properties:

11.2. Knowledge Authentication 173

• How untrustful and untrustworthy are the players? (i.e., what adversary
model is appropriate?)

• How many possible secrets exist? (i.e., what is the domain size |Ω|?)

• How many secrets need to be compared? Just one secret against one other
secret (1-to-1), one secret against many other secrets (1-to-many), or many
secrets against many secrets (many-to-many)?

• Does ‘secret’ mean that it is difficult to guess the string that represents
secret (as with the string ‘arkjjhhg bwr ufkng’), or does it mean that the
player has attributed some stance to a commonly known string? (as with
‘I voted for Pim Fortuyn’). We call the former CIWLI without reference, and
the latter CIWLI with reference.

We argue that for CIWLI, the only appropriate adversary model is the ma-
licious adversary model. In other adversary models, the adversary may infer the
secret by using a feasible amount of computation power. Of the many proto-
cols for CIWLI that exist in literature, only a few use the malicious adversary
model.

We observe that for all protocols for CIWLI that exist in literature, the com-
munication complexity (measured in bits) contains a factor ln |Ω| or worse,
which renders these protocols infeasible for comparing secrets from large do-
mains (for example domains containing all possible files which are 16 mega-
byte large).

We present two new protocols, T-1 and T-2. Both protocols assume a ma-
licious adversary, and solve CIWLI without reference. The term Ω does not
occur in their communication complexity, which means that the protocols re-
main feasible when the domain of possible secrets Ω is huge.

The T-1 protocol, presented in Chapter 9, solves the 1-to-many case, with
a communication complexity of only O(1). We prove the T-1 protocol correct
using an extended version of GNY logic.

The T-2 protocol, presented in Chapter 9, solves the many-to-many case,
and can be seen as a parallel composition of the T-1 protocol. It has an average
case communication complexity of

c1 · |KBA ∪KBB |+ c2 · |KBA ∩KBB |

where KBA (KBB) is the set of secrets possessed by player A (B), the constant
c1 has an upper bound c1 < 3 and the constant c2 depends on chosen secu-
rity parameters. This is particularly efficient, as every extra secret of A or B
(which is not mutually shared) results in a communication increase of on aver-
age less than three bits. This complexity has not yet been formally derived, but
experiments point strongly to the above relation.

In future research on knowledge authentication, the following issues need
to be addressed:

174 Chapter 11. Conclusion

• The theoretical framework of knowledge authentication may benefit
from further development and consolidation.

• The T-1 protocol is currently only formally analyzed using our extended
version of GNY logic. Appropriate would be additional analysis using
other methodologies, such as strand spaces [THG98, THG99], spi calcu-
lus [AG99] or Datta-Derek-Mitchell-Pavlovic logic [DDMP03].

• The communication complexity of the T-2 protocol has been established
experimentally. Though the results point in a very positive direction,
they do not provide strong formal guarantees. For formal guarantees
on the communication complexity, the communication complexity has to
be formally derived.

11.3 Hash Functions and Authentication Logics

Both knowledge authentication and information designators use cryptograph-
ic hash functions in new, unprecedented ways. In common applications of
cryptographic hash functions, the pre-image of a particular hash value is not
considered to be secret. In our applications, the pre-image is often secret, while
the corresponding hash value is not secret.

For our applications, we need cryptographic hash functions which satisfy
an uncommon property, namely that they are non-incremental. A cryptographic
hash function is non-incremental, if it is always necessary to have the full pre-
image at hand to compute the hash value of this pre-image. None of the cur-
rent standard cryptographic hash functions is non-incremental, but one can
construct a non-incremental cryptographic hash function quite easily from any
Merkle-Damgård cryptographic hash function, such as SHA-512.

At various places in the literature, it is assumed that the possession of a
hash value counts as a proof of the corresponding pre-image, but this not the
case. We show that BAN logic, a highly influential method for analyzing se-
curity protocols, relies on this false assumption. As a result, BAN logic is not
‘sound’: it is possible to derive false beliefs from true ones. As such, we demon-
strate that properly modeling cryptographic primitives can be very difficult.

We extend GNY logic, a particular authentication logic, to properly model
cryptographic hash functions. We prove correctness of the T-1 protocol using
GNY logic.

The following issues with cryptographic hash functions require future re-
search:

• The concept of non-incrementality for cryptographic hash functions is in
need of a formal definition. Given that the formal definition of a cryp-
tographic hash functions itself is already rather cumbersome (see Sec-
tions 3.2 and 3.3), the exercise of defining non-incrementality will proba-
bly be very difficult.

11.4. Relevance to the Privacy Debate 175

• The false assumption that possession of a hash value counts as a proof
of the corresponding pre-image has trickled through some parts of the
literature on computer security. Results that rely on this assumption may
turn out to be incorrect. Literature in which the false assumption is made
needs to be identified and the results in these publications need verifica-
tion.

In particular, the SET protocol [MV97a, MV97b, MV97c] and its analysis
in BAN logic [AvdHdV01] need close re-examination.

11.4 Relevance to the Privacy Debate

We have demonstrated that for a number of problems, confidentiality (read:
privacy protection) and availability (read: fighting terrorism) can go hand in
hand. A number of techniques has been developed:

Methods The information designator is a solution which demonstrates that link-
ing databases does not imply the abundant dissemination of sensitive in-
formation. On the contrary, if information designators are used, linking
databases can enhance confidentiality.

Protocols Knowledge authentication, as exemplified in the T-1 and T-2 protocols,
provides solutions demonstrating that comparing information for equal-
ity (a simple and elementary action) can be done without disclosing the
information.

The methods and protocols demonstrate that for linking and comparing
information, the information does not need to be disclosed. Thus, for linking
or comparing secrets without disclosing them, there is no longer a need for a
trusted third party, which is a gain. For application domains where it is not
possible to find a trusted third party, our contributions offer solutions which
were impossible before.

Our results warrant an existential statement: in relevant cases, it is possible
to reconcile information exchange and confidentiality. Thus, the idea that there
is an intrinsic trade-off between information exchange and confidentiality is
wrong and misleading. This is relevant to the privacy debate, since the goal of
the privacy debate is to find a balance in this supposed trade-off.

It may take a long time before the techniques presented in this thesis are
applied to the issues of the privacy debate. For one thing, policy makers must
understand the basic properties of our presented solutions and the possible fu-
ture solutions. We do not cherish any illusions about this. The personal experi-
ence of the author is that policy makers often have an abominable knowledge
of IT, information systems and epistemic logic1, and that the knowledge of ‘IT

1 Epistemic logic is roughly the logic of knowledge about other people’s knowledge. It analyzes
constructs like ‘I know that you know it, but you do not know that’, which are essential if one
wants to protect information against inappropriate dissemination. [FHMV95, MvdH95]

176 Chapter 11. Conclusion

consultants’ of privacy and related security issues is similarly depressing. In
our opinion, when a policy maker or IT consultant states that it is necessary
that privacy is sacrificed for some righteous task, this likely expresses either
ignorance, unwillingness or insufficient priority.2

Not all privacy problems which are caused by anti-terrorism activities can
be solved with the solutions offered in this thesis, only some of them. There is
no reason to suppose that this thesis has exhausted all solutions for reconcilia-
tion. Future research by us and others may provide many more results which
help to reconcile information exchange and confidentiality.

In general, security and cryptography research has mainly focused on fa-
cilitating a situation in which there are only good guys and bad guys. In this
situation, the bad guys need to be avoided, and need to be kept ignorant while
the good guys can be almost fully trusted. In practice, one considers only very
few of the organizations one needs to interact with as unequivocally good guys.
Thus, we need security solutions and cryptographic methods for interacting
with so-so guys: those not intrinsically bad, but not to be trusted more than
strictly necessary. Such solutions and methods are essential for addressing pri-
vacy issues.

2 Of course, there is nothing wrong with a policy maker who assigns only a humble priority to
the issue of privacy protection, when he clearly acknowledges this.

Part VI

Appendices

177

Appendix A

‘BAN logic’ does not uniquely identify one single
article in which it is introduced. The relation

between the many versions of the ‘BAN paper’
that exist is explained. We survey the major

critisims of BAN logic in the literature.

Remarks to
Authentication Logics

A.1 A Taxonomy of Versions of the BAN Paper

(Referred to on pages 47 and 56.)
The seminal paper “A Logic of Authentication” has a respectable number

of versions. Its precursor, “Authentication: A Practical Study in Belief and
Action” was presented at the second conference on Theoretical Aspects of Rea-
soning About Knowledge in March 1988 [BAN88, 18 pages]. Then, there is the
DEC technical report, which was published in February 1989 and revised in
February 1990 [BAN89a, 49 pages]. In April 1989, the work was submitted to
the Royal Society of London, which published it in December 1989 [BAN89b,
39 pages]. Also in December 1989, a revised version of the article was presented
on the twelfth ACM Symposium on Operating Systems Principles, which was
also published in the ACM SIGOPS Operating Systems Review [BAN89c, 13
pages]. This led to a paper in the ACM Transactions on Computer Systems
in February 1990 [BAN90a, 19 pages]. In May 1994, an appendix to the DEC
technical report was published [BAN94, 10 pages].

The most notable distinction between these versions is that in the ACM-
published versions and the DEC appendix, the notation of many operators has
changed from symbols (e.g. |≡) to linguistic terms (e.g. believes). These ver-
sions refer to the DEC technical report for full reference. The DEC technical
report and the Royal Society version [BAN89a, BAN89b] should be considered
the most complete versions, due to their size and the fact that these papers
are most often used in self-references of the authors. Martı́n Abadi considers
the Royal Society version the most definite one (on his homepage). These two
versions of the article contain a Section 12, “On Hashing”, which introduces

179

180 Appendix A. Remarks to Authentication Logics

and discusses the inference rule essential in Chapter 5 of this thesis. These
two versions also contain a Section 13, “Semantics”, which defines the partial
semantics for BAN logic, used in Sect. 5.6 of this thesis.

A.2 A Short Survey of Critisisms on BAN Logic

(Referred to on page 54.)
The main criticisms of BAN logic regard the following properties of the

logic:

1. the semantics,

2. the notion of belief,

3. the protocol idealization method,

4. the honesty assumption, and

5. the incompleteness.

These weaknesses of BAN logic have not been a reason to abandon the way
of thinking introduced by Burrows, Abadi and Needham. Many researchers
have tried to ‘repair’ BAN logic. The following pages we will give a short sur-
vey of the critiques and how and where they have been addressed in literature.

The first two critiques of the list above are, in more detail:

1. BAN logic has no (well-defined) semantics
It is not really clear what the constructs in the logic actually represent.1

2. BAN logic does not distinguish between possession and belief
Normally, one would like to distinguish between possessing a sentence
(e.g. “Clapton is God”) and believing such a sentence.

One of the first attempts to fix BAN logic was by Abadi and Tuttle, who in-
troduced AT logic [AT91], which has a slightly better semantics than the origi-
nal BAN logic. A second attempt was by Gong, Needham and Yahalom, who
introduced GNY logic [GNY90]. GNY logic distinguishes between possession
and belief, but has a semantics just about as poor as BAN logic.

Authentication logics with the goal to have a well-defined semantics and
a clear distinction between possession and belief are VO logic [vO93], SVO
logic [SvO94, SvO96], AUTLOG [KW94, WK96] and SVD logic [Dek00]. There
are many crossbreeds of these logics, and the logics have heavily influenced
one another. Often, it is relatively easy to translate protocols and formulae
between these logics.

Except for ‘repairs’ of the original BAN logic, extensions have also been
available in abundance. Here we will mention just a few of the extensions.

1 For a compact treatment on the value of semantics for authentication logics, consult [Syv91].

A.2. A Short Survey of Critisisms on BAN Logic 181

Gaarder and Snekkenes added time-related concepts to BAN logic [GS91], and
Syverson did something similar for AT logic [Syv93]. Kailar and Gligor ex-
tended BAN logic to make it less dependent on jurisdiction2 [GKSG91, KG91].

Analyzing a protocol by hand is a tedious task, and some of the logics have
been designed in such a way that computer-aided analysis can be performed.
In particular, AUTLOG is implemented in PROLOG [KW94], and SVD has an
implementation in the Isabelle theorem prover [Dek00]3. Also, model check-
ers have been used for protocol analysis, most notably by Lowe who found
a major error in the Needham-Schroeder Public-Key protocol (NSPK) in this
way [Low96].

Authentication logics have been tied to radically different approaches for
analyzing security protocols. One of them is the strand-space methodology
[THG98, THG99]. Van Oorschot used Strand-spaces to create yet another se-
mantics [Syv00], and Jacobs used it to create a new logic with an accompanying
implementation in the theorem prover PVS [Jac04]4.

The semantics and the notion of belief have not been the only aspects invit-
ing criticism. The remaining three important avenues of criticism are:

3. BAN logic has a rather vague ‘protocol idealization method’
The process of translating a protocol into the language of the logic is
poorly described and depends on ‘intuitions an intentions’. Clearly, a
rigorous description would be better.

4. BAN logic assumes honest principals
Within BAN logic, it is impossible to model principals which state lies.
This limits the kind of protocol flaws that can be found using BAN logic,
as lying can sometimes be relatively easy and computationally cheap.5

5. BAN logic is incomplete
There are protocol errors which BAN logic fails to identify; in fact, the
class of such protocol errors contains some rather obvious errors.

Critiques on the protocol idealization method of BAN logic have appeared
in [MB93, WK96]. In general, one can say that this problem has been addressed
in almost all authentication logics. Criticism number 4 (honesty), stated in
[GKSG91], boils down to criticism number 2 (possession and belief), and has
been resolved in various ways in most authentication logics.

Incompleteness of BAN logic has been demonstrated by Nessett [Nes90],
who showed a protocol which has a very obvious flaw, which cannot be de-

2 Jurisdiction is the concept that a specific principal in a protocol has designated authority over
some statements. Making BAN logic less dependent on jurisdiction therefore widens the class
of protocols that can be analyzed using BAN logic.

3 For background on Isabelle, consult [NPW02].
4 For background on PVS, consult [ORSvH95].
5 Thus, BAN logic supposedly is a logic in the Honest-But-Curious (HBC) attacker model, instead

of in the Dolev-Yao threat model.

182 Appendix A. Remarks to Authentication Logics

tected in BAN logic6. In some circumstances, incompleteness of BAN logic is
also due to incorrect protocol idealization [BM94].

Solving the problem of incompleteness of authentication logics is difficult
for a number of reasons. One of the challenging problems is that while
strengthening the logic, the modeled inference capabilities (computational re-
sources) of principals should remain the same. Thus, the inference capabilities
of the principals should be constrained (as in [ABV01]). This approach has led
to preliminary completeness results for authentication logics [CD05b, CD05a].

Though the original BAN logic has serious limitations, the way of reason-
ing is useful. The way of reasoning should not be abandoned because of the
flaws in the original logic [HPvdM03]. Moreover, recent results show that it is
possible to create a computational justification of authentication logics [AR02].

6 Burrows, Abadi and Needham replied to this critique essentially by stating that they never
claimed this would be the case [BAN90b]. Moreover, they felt the urge to humiliate Nessett by
calling one of his assumptions “absurd” and questioning his “wit of a man to notice” [BAN90b,
page 40].

Appendix B

In this thesis, we use an extension of GNY logic
to analyze the T-1 protocol. We summarize the

formal language and inference rules of GNY
logic, as presented in [GNY90]. Parts of the

language we do not use are omitted.

Summary of GNY Logic

(Referred to extensively from Chapters 4, 6 and 9.)
In this appendix, we summarize the formal language and inference rules of

GNY logic [GNY90]. Parts of the logic that we do not use are omitted.

B.1 Formal Language

A formula is a name used to refer to a bit string, which would have a particular
value in a protocol run. Let X and Y range over formulae, and +K and −K
over public keys and private keys respectively. The following are also formu-
lae:

(X, Y) conjunction of two formulae. We treat conjunctions as sets with
properties such as associativity and commutativity.

{X}+K public-key (asymmetric) encryption.

{X}−K private-key (asymmetric) signature
We assume a cryptosystem for which {{X}+K}−K = X holds
(i.e., encryption), and for which also {{X}−K}+K = X holds (i.e.,
signatures, e.g. RSA [RSA78]).

H(X) the hash value of X obtained by application of a strongly colli-
sion-free cryptographic hash function (CRHF).

∗X a not-originated-here formula. A formula X is a not-originated-
here formula if a principal receives X without having sent X it-
self before. Thus, a formula is a not-originated-here formula for
a principal P , if it is not a replay of one of P ’s previously sent
messages.

183

184 Appendix B. Summary of GNY Logic

Assertions reflect properties of formulae. Let P and Q be principals. The fol-
lowing are basic assertions:

P C X P is told formula X . P receives X , possibly after performing some
computation such as decryption.

P 3 X P possesses, or is capable of possessing, formula X . At a particular
state of a run, this (X) includes all the formulae P has been told,
all the formulae he started the session with, and all the ones he
has generated in that run. In addition P possesses, or is capable
of possessing, everything that is computable from the formulae
he already possesses.

P |∼ X P once conveyed formula X . X can be a message itself or some
content computable from such a message, i.e., a formula can be
conveyed implicitly.

P |≡](X) P believes, or is entitled to believe, that formula X is fresh. That is,
X has not been used for the same purpose at any time before the
current run of the protocol.

P |≡ φ(X) P believes, or is entitled to believe, that formula X is recognizable.
That is, P would recognize X if P has certain expectations about
the contents of X before actually receiving X . P may recognize a
particular value or a particular structure.

P |≡ P
S↔ Q P believes, or is entitled to believe, that S is a suitable secret for

P and Q. They may properly use it to mutually prove identity.
They may also use it as, or derive from it, a key to communicate.
S will never be discovered by any principal except P and Q.

P |≡+K7→ Q P believes, or is entitled to believe, that +K is a suitable public key
for Q, i.e., the matching secret key −K will never be discovered
by any principal except Q.

Let C range over assertions. The following are also assertions:

P |≡ C P believes, or is entitled to believe, that formula C holds.

C1, C2 conjunctions. We treat conjunctions as sets with properties such
as associativity and commutativity.

B.2 Inference Rules

We repeat all inference rules from [GNY90] used in this thesis. The rule names
correspond to the names used in the original article. The first letter of the
name intends to reflect the category of the rule: T is about being told, P about
possession, F about freshness, R about recognizability, and I about message

B.2. Inference Rules 185

interpretation. Some of the inference rules (P2, F1, I3) have more allowable
conclusions than used in this thesis. These unused conclusions are omitted.

An inference rule that applies to formula X also applies to ∗X , though not

necessarily vice versa. If
C1
C2

is an inference rule then for any principal P so is

P |≡ C1
P |≡ C2

.

T1
P C ∗X
P C X

Being told a ‘not-originated-here’ formula is a
special case of being told a formula.

T2
P C (X, Y)

P C X
Being told a formula implies being told each of
its concatenated components.

T6
P C {X}−K ,

P 3 +K
P C X

If a principal is told a formula encrypted with
a private key and he possesses the correspond-
ing public key then he is considered to have
also been told the decrypted contents of that for-
mula. This rule only holds for public-key sys-
tems with the property {{X}−K}+K = X (e.g.
RSA [RSA78]).

P1
P C X
P 3 X

A principal is capable of possessing anything he
is told.

P2
P 3 X,
P 3 Y

P 3 (X, Y)

If a principal possesses two formulae then he is
capable of possessing the formula constructed
by concatenating the two formulae.

P3
P 3 (X, Y)

P 3 X

If a principal possesses a formula then he is ca-
pable of possessing any one of the concatenated
components of that formula.

P4
P 3 X

P 3 H(X)

If a principal possesses a formula then he is
capable of possessing the hash value of that
formula obtained by application of a strongly
collision-free (collision resistant) cryptographic
hash function (CRHF)

.

P8
P 3 −K,
P 3 X

P 3 {X}−K

If a principal possesses a formula and a private
key then he is capable of possessing the decryp-
tion of that formula with that key (i.e., the cryp-
tographically signed formula).

F1
P |≡](X)

P |≡](X, Y)

If a principal believes a formula X is fresh, then
he is entitled to believe that any formula of
which X is a component is fresh.

186 Appendix B. Summary of GNY Logic

R6
P 3 H(X)
P |≡ φ(X)

If P possesses a formula H(X), then he is enti-
tled to believe that X is recognizable.

I3 P C ∗H(X, S), P 3 (X, S), P |≡ P
S↔ Q, P |≡](X, S)

P |≡ Q |∼ (X, S)

Suppose that for principal P all of the following hold: (1) P receives a formula
consisting of the hash value of X and S marked with a not-originated-here
sign; (2) P possesses S and X ; (3) P believes that S is a suitable secret for
himself and Q; (4) P believes that either X or S is fresh. Then P is entitled to
believe that Q once conveyed the formula X concatenated with S.1

I4 P C {X}−K , P 3 +K, P |≡+K7→ Q, P |≡ φ(X)
P |≡ Q |∼ X, P |≡ Q |∼ {X}−K

If P sees a signed message {X}−K , knows the public key +K, knows the cor-
responding private key −K belongs to Q, and recognizes X to be a message,
then P is entitled to believe that Q once conveyed the signed message {X}−K ,
and thus also once conveyed the message X itself.

I6
P |≡ Q |∼ X,
P |≡](X)

P |≡ Q 3 X

If P believes that Q once conveyed formula X
and P believes that X is fresh, then P is entitled
to believe that Q possesses X .

1 It should be noted that rule I3 as given here differs slightly from the definition in [GNY90],
which uses the notation 〈S〉 in some places instead of S to denote that S is used for identifica-
tion. This is non-essential and only syntactic sugar. For readability of the proofs, these brackets
have been omitted throughout this thesis.

Appendix C

There are many articles closely related to
knowledge authentication which deserve some
detailed comments because they contain minor

(or major) flaws, while the comments are outside
of the scope of Chapter 8 (Knowledge

Authentication). These comments are bundled
here.

Remarks to
Knowledge Authentication

C.1 The ‘French Approach’

(Referred to on page 115.)
In Table 8.1, a list of protocols is shown. The protocols presented in [DQB95,

QBA+98a, QBA+98b, QAD00, Ber04, CC04] are omitted from this table. These
omitted protocols are mainly protocols developed in the medical domain, and
it is rather difficult to qualify these protocols without being harsh and impo-
lite. In short: it seems that the thought that the mere application of cryptog-
raphy would solve all problems prevented a clear formulation of the threats
for which the protocols should offer a solution. We acknowledge that these are
very strong claims. Nevertheless, they seem appropriate. Some examples:

• In [QBA+98a, QBA+98b] quality assesment of the protocols is performed,
quoting figures on sensitivity and specificity. This type of assesments im-
plies that privacy and validity (as defined in Section 2.7 and summarized
at the start of this section) are not considered for granted.

• In [QBA+98a, QAD00] the term “cryptology” is used where ‘cryptogra-
phy’ is supposedly intended.

• In [Ber04] a protocol is devised that should be “zero-knowledge” but it is
never explained what zero-knowledge actually means, nor contains the
paper any reference to a paper about zero-knowledge.

• In [CC04] it is stated that the use of a MAC can prevent a dictionary at-
tack. This is only the case when one assumes the principals who know

187

188 Appendix C. Remarks to Knowledge Authentication

the key to the MAC are essentially honest — this makes the whole excer-
cise of devising a secure protocol for computing set relations useless.

These publications sometimes use terms like “minimal knowledge”, which can
be considered a confession that some knowledge (other than the set sizes) is
leaked. It suggests that zero-knowledge is impossible.

C.2 On the Probabilistic Communication Complex-
ity of Set Intersection

(Referred to on page 118.)
In the context of sparse sets, it is appropriate to clarify an often misinter-

preted result by Kalyanasundaram, Schnitger and Razborov (from here on:
KSR) [KS92, Raz92]1. For example, in [FNP04] it is claimed that the result of
KSR implies that the lower bound for communication complexity of the se-
cure computation of set intersection is at least proportional in |n|. All men are
mortal ([KS92, Raz92]), therefore Socrates is mortal ([FNP04]), so it seems.

KSR show that the probabilistic communication complexity of disjointness
is Θ(n) (where n = |Ω|)2. This result applies to a problem which is more general
than the problems described in Chapter 8. In particular:

1. The result of KSR applies to the communication complexity of a problem,
and not to the communication complexity of a particular protocol. In par-
ticular, they assume the principals have unlimited computational power.
Thus, the efficiency property as mentioned at the start of Section 8.5 does
not apply to the computational resources, only to the communication re-
sources.

2. The problem analyzed by KSR does not include privacy or validity con-
cerns: the principals are implicitly assumed to be honest, and do not care
whether their ‘private’ information is disclosed. One could say the hon-
est adversary model is assumed.

3. The problem analyzed by KSR applies to the disjointness problem (in
terms of Figure 8.2: fdisj), and not to the intersection problem (fint). The
intersection problem is more difficult than the disjunction problem3.

1 The result is oringinally published by Kalyanasundaram and Schnitger in [KS92]. It has been
greatly simplified by Razborov [Raz92].

2 It is difficult to use consistent notation which is not misleading. As we have defined our domain
of set items to be Ω, we might as well write Θ(|Ω|), but Ω has also a meaning in complexity.
Therefore, we introduce n. We admit this notation is far from optimal.

3 If, for some X and Y one knows fint(X, Y), one can easily infer fdisj(X, Y). Observe that

fdisj(X, Y) =

1 if fint(X, Y) = ∅
0 if fint(X, Y) 6= ∅

The opposite is not the case: one cannot always infer fint(X, Y) from fdisj(X, Y).

C.3. Fuzzy Private Matching 189

4. In the problem analyzed by KSR, no assumptions are made on the set
sizes.

It is tempting to project these results to the problems described in Chapter 8.
As the result by KSR is more general, these results would, so it seems, also
apply to the problems analyzed in Chapter 8.

The generality of the result by KSR is misleading. The first three observa-
tions listed above seem to warrant a projection of the results of KSR to secure
computation of set relations. The fourth observation, that there is no assump-
tion on the set sizes, prevents projection of their results to secure computation
of set relations. With extra assumptions on the set sizes, it is possible to con-
struct protocols which are more efficient than the lower bound derived by KSR.
In particular, if the sets cover only a sparse fraction of the domain Ω, it is pos-
sible to devise protocols whose communication complexity is below |Ω|. And
in fact, the protocols presented in [FNP04] are an example of this.

It has to be admitted that [KS92] gives opportunities to misinterpret the
result. The abstract starts with:

“It is shown that, for inputs of length n, the probabilistic (bounded
error) communication complexity of set intersection is Θ(n).”

With “inputs of length n”, the authors tacitly mean ‘inputs of length n if encoded
in a specific manner, namely . . . ’. Moreover, where they write “set intersection”,
the authors actually mean ‘intersection cardinality > 0’, which is the dual of set
disjointness (see Figure 8.2 on page 110).

Therefore, the result of KSR does not imply that the lower bound for com-
munication complexity of the secure computation of set intersection is at least
proportional in |n|.

C.3 Fuzzy Private Matching

In [FNP04], on pages 16 and 17, a problem closely related to knowledge au-
thentication is presented: Private Fuzzy Matching. The problem is not only to
find exact matches, but also ‘close matches’, which they define well. The proto-
col they present on page [FNP04, page 17] is however incorrect. This problem
has been identified by Łukasz Chmielewski. In [CH06], a corrected protocol,
and other protocols for this problem are presented.

Appendix D

The T-1 protocol has a prototype implementation
as a Java application. It is explained how this

prototype is operated. The prototype allows one to
stress-test the T-1 protocol.

The Secret Prover
With use of the T-1 protocol, it is possible to prove possession of arbitrary se-
crets (Chapter 9). The ‘Secret Prover’ is a prototype implementation of the T-1
protocol. With it, people can prove possession of files, and explore how the pro-
tocol works. The Secret Prover is a Java application1, which can be downloaded
from http://www.teepe.com/phdthesis/demo . Java 1.4 or newer is re-
quired, which is available for Mac OS, Windows and many Unices, including
Linux.

In this appendix, we will talk you through the whole application, in such a
way that you can run the protocol yourself. No deep understanding of the T-1
protocol is required. Running the protocol hands-on, with some help from the
screenshots printed in this chapter, may even help to gain some basic under-
standing of the T-1 protocol.

The Secret Prover has the following features:

• Execution of all three configurations of the protocol (the verifier initiates,
the prover initiates, mutual proof).

• Support for the following hash algorithms: MD5, SHA-1, SHA-256, SHA-
384 and SHA-512.2

• Support for using a nonce, or encryption. The following encryption algo-
rithms are supported: DES, Triple DES, Blowfish.

• The transport mechanisms used is TCP/IP. (i.e., it works over the inter-
net.)

• There is no authentication of the identity of the principals in the protocol.
The authenticity of the communication channel is also not guaranteed.

1 The current version number is 0.03.
2 For SHA-256, SHA-384 and SHA-512, Java 1.5 is required. If one side of the protocol tries to use

one of these hash algorithms, while it is not supported at the other side of the protocol, this is
detected and a warning is given.

191

http://www.teepe.com/phdthesis/demo

192 Appendix D. The Secret Prover

• Multiple proof messages can be sent per protocol.3

• Protocols can be interleaved.

• It is possible to perform ‘fake’ actions in the protocol.

• It is possible to trim down (‘mutilate’) hash values to a few bits, to simu-
late the effect of hash collisions on the protocol.

If you want to run the prototype yourself and experiment with it, you
should read on from here. If on the other hand you only want so look how
it works, without running anything yourself, you may skip Section D.1, and if
you are very impatient, you might skip Section D.2 as well.

D.1 Starting Up and Connection Control

Once you have downloaded the application file you can start it up. On Unix-
like operating systems, this is done by typing
java -jar Prover.jar &
at the console. In more graphical environments, like Mac OS X, the file can
simply be ‘double-clicked’. Once the application has launched, you will see
appear the main application window (Figure D.1).

FIGURE D.1:
Main application window.

The main application window consists of four
parts, from top to bottom:

A menu bar From here you can stop the applica-
tion or open the splash screen.

Hash pools This is where pre-computed hash
values are stored, it will be described in
Section D.2.

Listening server ports Here all connection lis-
teners are managed. When you open a con-
nection listener, someone can contact you
by opening a connection to the specified
host and port.

Connections Here all connections are managed.
You may contact somebody, and the con-
nection will be displayed here. Also, if you
have a connection listener open, if some-
body contacts you through the listener, the
connection will show up here.

3 This is a slight generalization of the T-1 protocol. In the T-1 protocol, if the prover is also the
initiator, he can only send one single h2 value. In the prototype, an initiating prover may send
multiple h2 values. This generalization has been implemented to ease the process of experi-
menting with the protocol.

D.1. Starting Up and Connection Control 193

FIGURE D.2: Opening a connection listener. FIGURE D.3: Filling in a name.

D.1.1 Opening a Connection Listener

The TCP/IP protocol works using ‘meeting places’. A meeting place is a com-
bination of a computer (a host, an IP address) and a port (a number). The
owner of a computer may set up a meeting place by listening at the spot of the
number. Anybody else contacting the host at the port will get connected. For
any connection, one of the participants has to set up such a ‘meeting place’.

By clicking on ‘Add’ in the ‘Listening server ports’ pane of the main appli-
cation window (Figure D.1), you can set up such a meeting place. The host is
already set to reflect your computer’s IP address, but you do have to provide a
port number and a name (Figure D.2). The port number is set to a reasonable
default, but you really should fill in the name field. This name is not essential
to setting up a connection, but it will be used in the protocols later on.

Throughout the examples I will use the name ‘Wouter’ (Figure D.3). Later
on in the example, a second player will be introduced, and for the second
player I will use the name ‘Kathy’. In the text I will sometimes refer to Kathy or
Wouter. Obviously, you are free to use other names. You should however take
note which of the names you use correspond to the roles of Kathy and Wouter,
because it may help you to understand the explanation.

If the port for some technical reason or another cannot be used as a meeting
place, you will be informed so, and in that case you should use another port
number and try again.

Now you may by whatever means you see fit inform somebody else to con-
tact you at the specified host and port. The host is the name or IP address of
your computer. For your convenience, this is displayed in the ‘Listening server
ports’ pane of the main application window. The port number is the number
you just specified.

Instruct some friend or colleague to run the software as well. The best and
most convincing way to see how it works is to run the protocol with somebody
else. However, if you lack somebody to play the game with, or don’t want to
bother anybody, you may connect yourself to the server and the port. That is
what we’re going to do in the next section.

D.1.2 Making a Connection

By clicking ‘Add’ in the ‘Connections’ pane of the main application window
(Figure D.1), you get the ‘connection’ window shown in Figure D.4. Since

194 Appendix D. The Secret Prover

FIGURE D.4:
Making a
connection.

FIGURE D.5:
Filling in
connection details.

FIGURE D.6:
An initiated connection (outgoing).

we are connecting to ourselves, we should distinguish between our own two
‘egos’. A good way to easily distinguish these is to put all windows concerning
ego #1 (Wouter) on the left hand side of the screen, and all windows concerning
ego #2 (Kathy) of the right hand side of the screen. (Now drag the connection
window to the right hand side of your screen.)

In the top of the connection window, you see the ‘local side’ pane: this is
about who you (the connecting side) are. Choose some name for your ego #2
and fill it in. Below that, you see the ‘remote side pane’: this is what meeting
place (host and port) you are connecting to, and who you expect to find there
(Figure D.5). If you leave empty the host field, it will connect to the local com-
puter. (And we have just opened a listener on the local computer on port 4444,
so this will all work out.) As soon as you click ‘Connect’, the software will try
and make the connection for you. The window will ‘grow’ and transform into
the window shown in Figure D.6.

When you have done this, you will see that some more windows have
popped up. Most importantly, a window has popped up that belongs to the
listening port (Figure D.7). If you would not have connected to yourself, but to
somebody on another host (i.e., another computer), the window would have
come up there.

Also, two ‘authentication’ windows have popped up (Figure D.8), which in-
form both sides of the connection that some authentication should take place.4

You may click on ‘OK’ to close the authentication windows.
Of course, it may happen that the person responding on the meeting place

is not the person you expected to meet there. In that case an ‘authentication
mismatch’ warning is given (Figure D.9).5

4 The T-1 protocol requires an authenticated communication channel. We haven’t implemented
this authentication, because it would complicate the setup process even more, while the authen-
tication is not essential for demonstrating the protocol. Of course, the authentication is essential
in the sense that without it, anybody can claim to be anybody else, which is clearly undesirable.
Any production implementation should obviously include authentication of the players and of
the communication channel.

5 Since no real authentication is done in this prototype, this warning is mainly cosmetic.

D.1. Starting Up and Connection Control 195

FIGURE D.7:
Receiving a connection (incoming).

FIGURE D.8:
An authentication warning.

FIGURE D.9:
An authentication mismatch.

FIGURE D.10:
Main application window,
with connections.

If all has gone well, the main application win-
dow will look like Figure D.10:

Listening server ports In this pane a line has ap-
peared which informs you the port is lis-
tening for new connections. You may se-
lect ports and remove/close them using the
buttons in the pane.

Connections In this pane, the two sides of the
connection are shown. If you would be
connecting to somebody on another host,
only one line would have shown up. If
you click the ‘View’ button, the window
containing the connection details will be
shown (either Figure D.6 or D.7).6

Congratulations! you have passed the ‘bor-
ing’ part of the prototype! In the next section, we
will pre-compute hash values, and store them in
hash pools.

6 The details shown in the connections pane are as follows:

• The columns ‘local name’, ‘remote name’ and ‘remote host’ are pretty self-explanatory.

• The column ‘in’ shows whether it is an incoming connection (you have set up a lis-
tener/meeting place and somebody went there), or whether it is an outgoing connection
(you went to a meeting place that somebody else has set up). Checked means it is an incom-
ing connection, unchecked means it is an outgoing connection.

• The column ‘up’ is checked if the connection is up, that is, it has not been terminated in some
way or another.

196 Appendix D. The Secret Prover

FIGURE D.11:
A new hash pool
window.

FIGURE D.12:
Adding files to a hash
pool.

FIGURE D.13:
A hash pool with files
added.

D.2 Managing Hash Pools

The protocol uses a hash value (h1) to refer to the file of which knowledge is to
be proven. When you initiate the protocol, you can compute the hash value as
easy as that. If, however, you are on the responding side of the protocol, you
have to find out what file the hash value h1 refers to. That is what hash pools
are for. A hash pool is a collection of precomputed mappings from hash value
to file and vice versa.

A hash pool has some settings, which determine the exact way the hashes
are computed from the files. These settings are:

Algorithm The hash algorithm used to compute the hash. Currently MD5,
SHA-1, SHA-256, SHA-384 and SHA-512 are available.

Mutilation All hash algorithms generate a value of a certain number of bits.
If we want to stress-test the protocol for what happens if we have (for
example) collisions, we can easily enforce collisions by trimming down
the hash values to a limited number of bits.

Obviously, in any production environment, you don’t want to mutilate
your hash values.

Nonce If the protocol uses a nonce (and thus no encryption), a nonce must
be used in the process of computing the hash values. In the prototype,
nonces are 64 bits long, but they could be of any sufficiently large size.

D.2. Managing Hash Pools 197

FIGURE D.14:
Computation of hash
values.

FIGURE D.15:
A ready hash pool.

FIGURE D.16:
Adding files to an
existing hash pool.

To create a hash pool from scratch, press the ‘Add’ button in the ‘hash pools’
pane of the main application window (Figures D.1 and D.10). It will display a
window in which the described settings can be set (Figure D.11).

Next to some settings, a hash pool obviously has a file list. Using the ‘Add’
button, files can be selected for inclusion in the hash pool (Figure D.12). You
can also add directories. In that case, the program will recursively add all
files in the directory (Figure D.13). Only after pressing the ‘Run’ button, the
computation of the hash values starts (Figure D.14). Depending on the total
volume of the files, this may take some time. A progress bar will give you a
precise approximation of the progress.

After having done the precomputations, the hash pool window (Figure
D.15) serves two main purposes:

1. Displaying the list of added files and directories;

2. Allowing you to add more files and directories to the hash pool.

The first purpose is obvious, the second almost as much. After pressing
‘Add files’ in a hash pool window which has finished computing, it will pop
up a new window in which all settings are adopted from the existing hash pool,
and you can add new files (Figure D.16). After pressing ‘Run’, the additional
precomputations will be performed and the files will be added to the hash pool.
Any protocols bound to this hash pool will be updated automatically.

If you run the protocol, you may indeed use the ‘Add files’ function quite a
lot. That will be described in the Section D.3.3.

198 Appendix D. The Secret Prover

D.3 Running the Protocol

There are three configurations of the T-1 protocol, and for each of the configura-
tions, a protocol with and a protocol without encryption exists. As an initiator
of the protocol, one can choose to use encryption or use a nonce (two mutu-
ally exclusive options), and one can choose whether the initiator only proves,
both proves and verifies, or only verifies (three mutually exclusive options).
The combination of these choices gives a total of six possible protocols. All six
blends of the protocol can be performed with the prototype.

When running a protocol, one has to keep track of several properties of
the protocol, such as the file the protocol is about, what hash function is used,
what nonce is used, and so on. All protocol windows display this information.
When one initiates a protocol, one can also manipulate these attributes. There-
fore, before explaining all protocol actions, we will briefly describe all protocol
properties, and how they are shown in the protocol window.

In a protocol window, one can see from top to bottom the following things:

chat session The full communication history of the protocol. This displays
exactly what bytes are sent along the TCP/IP connection regarding the
current protocol run. Messages sent by you are prepended with ‘SEND:’,
and messages sent by the remote side (the person you’re communicating
with) are prepended with ‘RECEIVE:’, for clarity.

Protocol configuration Here the security settings of the protocol are set or dis-
played. It is a superset of the options of a hash pool.

If you initiate the protocol, this is where you choose to either use a nonce,
or use encryption. If you choose to use a nonce, you must give one, and if
you choose to use encryption, you must choose an encryption algorithm
and a key.

If you are not the initiator, this is where you must fill in either the nonce
or the key, depending on the protocol type the initiator has chosen.

Your role Whether you are to prove, you are to verify or to prove and verify.
As an initiator, you can set this parameter.

The big fingerprint/subject Here the subject of the protocol is identified. That
is: the initiator chooses a file, h1 will be computed. The initiator will see
both the file name and h1, the responder will only see h1.

Here is also an option to ‘fake’, this will be explained later on. For now,
you may ignore this option.

A button A multi purpose button. Its purpose depends on the state the proto-
col is in. While the protocol is being set up, the initiator of the protocol
can fire up the protocol by pressing ‘Initiate’, upon which the communi-
cation will commence.

D.3. Running the Protocol 199

FIGURE D.17:
A new protocol
window for the
initiator.

FIGURE D.18:
A protocol window,
configured by the
initiator.

FIGURE D.19:
A protocol window of the
initiator for a protocol that has
started.

The responder on the other hand, will see ‘Commit ...’ when the protocol
has just started. Pressing the button, the responder can confirm the nonce
or key he has entered.

After this, both sides will see here ‘View hash pool’. Each protocol run
has an associated hash pool, which can be inspected and extended using
this button. It will display the corresponding hash pool window.

The association between hash pool and protocol run is not exclusive: one
hash pool may be bound to more than one protocol run.

All these options may seem somewhat dazzling, but that will wear away
quickly. In the next section, hopefully most questions will vanish.

D.3.1 Initiating a Protocol

Remember, we had set up a connection from Kathy to Wouter. We also had
made a hash pool with the MD5 algorithm and the nonce 72365F9890F87665.
Kathy (e.g. you) may now press the ‘Add’ button in the connection window
(Figure D.7), and in the window that pops up (Figure D.17) select the hash
algorithm, state that she wants to use a nonce, fill in the nonce, say she wants
to prove (only), and use the ‘Browse’ button to select a file (it will look like
Figure D.18).

Finally she presses ‘Initiate’ and the protocol is fired up. Along firing up
the protocol, the window is enlarged (Figure D.19). Don’t worry, we’ll explain
what you’ll see in the added part later on, in step 3.3.

In case the responding side does not know or support the chosen hash and
encryption algorithms, you will be informed so and may choose to try again
using other algorithms. (Java 1.4 only supports MD5 and SHA-1, Java 1.5 also
supports SHA-256, SHA-384 and SHA-512).

200 Appendix D. The Secret Prover

FIGURE D.20:
A new protocol
window for the
responder.

FIGURE D.21:
The responder has
filled in the nonce.

FIGURE D.22:
The responder has committed the
nonce.

D.3.2 Responding to a Protocol

Okay, Kathy has just initiated a protocol to Wouter. This has the result that
at Wouter’s side, a window has popped (Figure D.20). All protocol attributes
are shown, except a crucial part. This crucial part is the nonce, if a nonce is
used, and if encryption is used, the key. The responder should provide this
information.

When a nonce is used, the nonce influences which hash pool is used. Fill-
ing in the wrong nonce will result in not finding the file corresponding to the
received hash value.

When encryption is used, filling in the wrong key will result in not being
able to decrypt the received hash value. This will be detected, and you will be
prompted to try another key instead.

For now, Wouter should somehow know the nonce 72365F9890F87665 and
fill it in (Figure D.21), and commit it. After committing, the window is enlarged
(Figure D.22), similarly to the enlargement on the initiator’s side.

D.3.3 A Side Note on Hash Pools

After initiating a protocol or committing the key or nonce to a protocol, the
prototype automatically finds out what hash pool settings should be used for
the current protocol. If such a hash pool already exists, it will take it. If such a
hash pool does not yet exist, it will create it on the fly, with no files added yet.

Then, for the initiator, the hash value of the chosen file is computed and
added to the hash pool, or looked up if it already was in the hash pool.

Strictly spoken, the initiator does not need a hash pool, only the responder
does. There may however be situations in which it is desirable for the initiator
to maintain a hash pool as well. (For example, if the initiator will be a respon-
der in another protocol run, keeping a hash pool will save him computations.)

D.3. Running the Protocol 201

The responder will use the hash pool to try to figure out what file the ini-
tiator is talking about. If the responder already has done precomputations (i.e.,
created the hash pool and filled it with files), this will be inferred automagi-
cally. The responder may however always, during execution of the protocol,
add files to the hash pool. This means that if the initiator has not done any
precomputations, he is free to do these computations right on the spot, while
the protocol has already started.

D.3.4 Challenging

There is another side note to make before we get to making a challenge. The
screenshots and explanations you see and read here investigate the case where
the initiator is the proving side, and the responder is the verifying side. If the
initiator has chosen another option in the ‘role’ field (Figure D.17), this would
all be different. From here on we talk about provers and verifiers. It is just a
mere coincidence that the prover also is the initiator, and nothing more.

Now, Wouter should verify Kathy’s possession of the file, so he should go
and do this. First step would be to look in the hash pool for a matching file, and
if no file was found, Wouter could try and add more files to the hash pool to see
whether he finds the matching file. In case of this example, we have already
done precomputations, and so Wouter has an educated guess which file it is.

To verify Kathy’s possession of the file, Wouter has to challenge Kathy. By
pressing ‘Compute’ (Figure D.22), a challenge will be generated such that it
discriminates within I?. In fact, this is just making up some random challenge
and test that it does indeed discriminate within I?, if it doesn’t, it just tries
again with another random challenge.7

You may also choose the challenge yourself. In that case check the ‘Specific’
box, and fill in a challenge (Figure D.22). Then press ‘Compute’. This option
should not be used in production environments. It allows to test and verify
that nobody can perform a man-in-the-middle attack.

Currently, all challenges are 64 bits long. This is not due to any limitation
in the protocol, but just because we wanted to limit the number of options to
the user. (There are enough options to choose from already.) The size of the
challenge should be big enough to make it infeasible for an adversary to try all
possible challenges.

You may remember from Chapter 9, that if the verifier is also the responder,
he may also halt the protocol. This should typically be done when the respon-
der has no matching file or does not wish to prove possession of the matching
file. Therefore, you see that there actually is the choice to either challenge, or to
halt. To confirm the choice, press ‘Do it’ (Figure D.23). After this confirmation
the other side will be informed accordingly. For demonstration purposes, let
Wouter actually challenge Kathy, and press ‘Do it’ (it will look like Figure D.24).

7 Little exercise: Imagine what would happen if we would have thousands of files in our hash
pool and would be trimming our hash values to only 3 bits.

202 Appendix D. The Secret Prover

FIGURE D.23: The verifier chooses whether he will halt the protocol. For the
chosen challenge, the required hash value h2 has been computed.

FIGURE D.24: The verifier has challenged the prover.

FIGURE D.25: The prover has received a challenge. With this challenge, the
required hash value h2 has been computed.

D.3. Running the Protocol 203

FIGURE D.26: The prover sends some fake hash value h2.

FIGURE D.27: The prover sends a genuine hash value h2.

D.3.5 Proving

When the prover has received a challenge, the main protocol window (which
looked like Figure D.19), will have the challenge filled in, and the value h2

computed (Figure D.25).
The prover may send any number of h2 hash values, and should then in-

form the verifier that no more hash values will be sent.
The h2 hash values the prover sends would in an optimal case always be

truthful. However, we want to demonstrate that sending untruthful h2 hash
values will not result in the verifier becoming convinced. Therefore, the prover
has two options for sending a h2 hash value:

1. Just make up some untruthful h2 hash value, and send it. To do this, the
prover presses the ‘add fake’ button, which will add a fake file to I? with
a random h2 hash value. This ‘hash value’ may be edited. After this,
select the fake file and press ‘prove’ (Figure D.26).

2. Choose a matching file from I?, and sent the corresponding hash value
h2 (is has already been computed). To do this, the prover selects one or
more files from the list, and presses the ‘prove’ button (Figure D.27).

When the prover has performed actions as he sees fit, he can inform the
verifier that he is finished. This is done by pressing the ‘finish’ button (it will
look like Figure D.28).

204 Appendix D. The Secret Prover

FIGURE D.28: The prover hash halted the protocol (no more proofs will fol-
low).

D.3.6 Verifying

After the verifier has challenged the prover, he is left with the task of the actual
verification of the h2 messages sent by the prover.

The prover can send a number of h2 hash values, and then inform that no
more h2 hash values will follow. Each incoming h2 hash value is looked up in
the set I?. If there is no matching file, there are two possible interpretations:

1. The prover has a file which gives the same h1 hash value as the file the
verifier has. This is increasingly unlikely as the hash size gets bigger.
With a hash size of 128 bits, this is negligibly unlikely. (Assumed that the
used hash function is a sufficiently good one.)

2. The prover has just made up some h2 hash value.

Since the first option is so unlikely, if a hash value h2 is received with no
matching file in I?, it will be marked as ‘faked’ (Figure D.29).

If a matching file is found, this file will be marked as ‘proven’, and this will
be shown to the verifier (Figure D.30).

Finally, when the prover informs the verifier that he is finished, the verifier
can finalize his interpretation of the received hashes. If the file was marked
as ‘proven’, the prover both possessed the file and wanted to prove it to the

D.3. Running the Protocol 205

FIGURE D.29: The verifier receives an unexpected value of h2. It is marked as
‘fake’.

FIGURE D.30: The verifier receives the h2 he expected. The corresponding file
is marked as ‘proven’.

FIGURE D.31: The verifier has been informed that the prover has halted the
protocol. (No more proofs will follow)

206 Appendix D. The Secret Prover

verifier. If no such mark has been made, the prover either did not possess the
file, or did possess the file but did now want to prove this to the verifier.

D.3.7 Faking

The prototype can demonstrate that the T-1 protocol is secure in the malicious
adversary model. The prototype facilitates all kinds of malicious behavior:

h1 The initial hash value h1 can be set manually. In the initialization of the
protocol (Section D.3.1), instead of selecting a specific file to run the pro-
tocol with, one can choose ‘Fake’, and fill in the h1 value directly. The
button ‘Randomize’ is at ones disposal to help you make up some ran-
dom value for h1.8

C The challenge the verifier sends to the prover, should be made up at
random, which is what the prototype can do. However, a malicious
player may want to challenge in a specific way. While challenging (Sec-
tion D.3.4), one can check the ‘Specific’ box, in which case the malicious
player can fill in the challenge he wants to use.9

h2 The response h2 hash value the prover sends, can also be faked. This has
been demonstrated in Sections D.3.5 and D.3.6.

Using these features, a malicious adversary can perform actions which are
syntactically correct, but not intended. This kind of actions will never result
in a non-malicious player being misled. That is, a non-malicious player will
never be sneaked into believing that a malicious player possesses a file while
he does not possess the file.

D.4 Closing

After having played around, a moment in time might arrive in which a user of
the prototype decides to temporarily stop playing around with the software.
Specifically for those users, the ‘Exit’ action is implemented. It is found in the
‘File’ menu of the main application window.

Exiting the program will result in all information in the hash pools being
lost. If at a later moment one wants to rerun the protocols, one will need to
rebuild the hash pools from scratch.

In case one only wants to stop communicating with some other player, one
can disconnect the other player by pressing the ‘Disconnect’ button in the con-
nection window (Figure D.7). All non-terminated protocols using the connec-
tion will obviously stop.

8 Using this feature, one can try to claim possession of a file which one does not have. The
protocol will however never let you successfully prove you do indeed possess the claimed file.

9 Using this function, the malicious player might try to perform a man-in-the-middle attack. He
will not succeed, because he will need to present a hash value h2 with the given challenge and
also a name, and such a hash will never be computed by another trustworthy user.

Appendix E

Notation

E.1 Symbols

|∼ once conveyed (GNY logic, BAN logic)
|− derivable within a logic
|= observable within a model
|≡ believes (GNY logic, BAN logic)
·7→ public key (GNY logic, BAN logic)
·↔ shared secret (GNY logic, BAN logic)

](·) fresh (GNY logic, BAN logic)
φ(·) recognizable (GNY logic)
∗ not-originated-here (GNY logic)
C is told (GNY logic, BAN logic)
3 possesses (GNY logic)
� combining function

(used in the randomize-then-combine paradigm)
⊕ bitwise exclusive or
| · | the cardinality (number of elements) of a set
{·} a set
{·}· encryption;

{M}K denotes the message M encrypted under symmetric key K;
{M}+K denotes the message M encrypted under public key +K;
{M}−K denotes the message M signed under private key −K

207

208 Appendix E. Notation

E.2 Letters

Ω the domain of all possible secrets
Φ the compressed domain of all possible secrets (Section 8.6)
A the principal Alice
B the set of beliefs (|≡) of a principal (BAN logic)
B the principal Bob
c a constant factor in a formula
C either:

• the principal Cecil (trustworthy) or Charlie (untrustworthy)
• a challenge (a message or bit string constructed for the sake of

being unpredictable)

D a designator
E the principal Eve (the evil eavesdropper)
ε the empty string
ε an error margin
f(·) a compression function (used in the Merkle-Damgård paradigm)
g(·) a randomizing function (used in the randomize-then-combine par-

adigm)
h a hash value; in the T-1 and T-2 protocols:

h1 is the hash value that ‘points at’ a secret
h2 is the hash value that ‘proves possession of’ a secret

H(·) a non-keyed cryptographic hash function
I a specific secret; IQ is a secret of principal Q (IQ ∈ KBQ)
I? a set of specific secrets;

IQ? = {IQ ∈ KBQ|H(IQ, N) = h1}; or
IQ? = {IQ ∈ KBQ|H(IQ) = h1}

k a security parameter (a measure of the strength of a cryptographic
function)

K a symmetric key
−K a private key (the corresponding public key is +K);

−KA denotes the private key of A (etc.)
+K a public key (the corresponding private key is −K);

+KA denotes the public key of A (etc.)
KB a set of IB’s possessed by an principal;

KBA denotes the set of IB’s of A (etc.)
l the length of a bit string
ln the logarithm (with base 2)
M a message
M the set of messages seen (C) by a principal (BAN logic)
MAC (·, ·) a keyed cryptographic hash function (also called message authenti-

cation code, or MAC);
MAC (K, M) denotes message M hashed under key K

N a nonce (a message constructed for the sake of being fresh)
p a prefix of a hash value

E.2. Letters 209

p1 is the prefix of h1

p2 is the prefix of h2

P the principal Peggy (the prover)
P(·) the power set, the set of all possible subsets;

<∞
P is the set of all possible finite subsets;

<∞
P ({0, 1}∗) is the set of all possible finite sets of finite bit strings

Q a principal which may be either Alice, Bob, Cecil, Eve, Peggy or
Victor

s a global state in a protocol run; sQ is a local state of principal Q
(BAN logic)

S either:

• a secret (either private or shared) (GNY logic)
• a set of binary strings (used in the T-2 protocol)

t a timestamp or time interval (see Section 7.4)
V the principal Victor (the verifier)

Bibliography

At the right are the page numbers on which the sources are referred.

[ABV01] Rafael Accorsi, David Basin, and Luca Viganò. Towards an aware-
ness-based semantics for security protocol analysis. Electronic Notes in
Theoretical Computer Science, 55(1), 2001. 71, 182

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju.
Web Services: Concepts, Architecture and Applications. Springer Verlag,
2004. 88, 92

[AES03] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant.
Information sharing across private databases. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, pages
86–97, New York, NY, USA, 2003. ACM Press. 114, 115

[AF90] Martı́n Abadi and Joan Feigenbaum. Secure circuit evaluation, a pro-
tocol based on hiding information from an oracle. Journal of Cryptology,
2(1):1–12, February 1990. 24

[AF04] Martı́n Abadi and Cédric Fournet. Private authentication. Theoretical
Computer Science, 322(3):427–476, 2004. 102

[AG99] Martı́n Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computation, 148(1):1–70,
January 1999. 174

[AIR01] Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious trans-
fer: How to sell digital goods. In Birgit Pfitzmann, editor, Advances in
Cryptology - EUROCRYPT 2001, volume 2045 of Lecture Notes in Com-
puter Science, pages 119–135, Berlin / Heidelberg, 2001. Springer. 22

[And93] Ross Anderson. The classification of hash functions. In Proceedings of
the IMA Conference in Cryptography and Coding, 1993. 29, 33, 34, 36

[AR02] Martı́n Abadi and Phillip Rogaway. Reconciling two views of cryptog-
raphy (the computational soundness of formal encryption). Journal of
Cryptology, 15(2):103–127, 2002. 18, 47, 66, 182

[AT91] Martı́n Abadi and Mark Tuttle. A semantics for a logic of authenti-
cation. In Proceedings of the Tenth Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 201–216, Montreal, August 1991.

47, 66, 180
[AvdHdV01] Nesria Agray, Wiebe van der Hoek, and Erik P. de Vink. On

BAN logics for industrial security protocols. In Barbara Dunin-Kȩplicz
and Edward Nawarecki, editors, Proceedings of the Second International
Workshop of Central and Eastern Europe on Multi-Agent Systems, pages
29–36, Cracow, 2001. 44, 48, 66, 175

[AvH04] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer.
MIT Press, Cambridge, MA, 2004. 84

211

212 Bibliography

[Bac02] Adam Back. Hashcash - a denial of service counter-measure. Technical
report, hashcash.org, August 2002. 43

[BAN88] Michael Burrows, Martı́n Abadi, and Roger Needham. Authentica-
tion: A practical study in belief and action. In M. Vardi, editor, Pro-
ceedings of the Second Conference on Theoretical Aspects of Reasoning About
Knowledge, pages 325–342, 1988. 63, 179

[BAN89a] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic of
authentication. Technical Report 39, Digital Equipment Corporation
Systems Research Center, February 28 1989. revised on February 22,
1990. 47, 55, 56, 57, 58, 61, 62, 63, 65, 179

[BAN89b] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic
of authentication. Proceedings of the Royal Society of London, Series A,
Mathematical and Physical Sciences, 426(1871):233–271, December 1989.

44, 47, 55, 56, 57, 58, 61, 62, 63, 65, 179
[BAN89c] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic of

authentication. ACM SIGOPS Operating Systems Review (Proceedings of
the 12th ACM Symposium on Operating Systems Principles), 23(5):1–13,
December 1989. 179

[BAN90a] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic
of authentication. ACM Transactions on Computer Systems, 8(1):18–36,
February 1990. 179

[BAN90b] Michael Burrows, Martı́n Abadi, and Roger Needham. Rejoinder
to Nessett. ACM SIGOPS Operating Systems Review, 24(2):39–40, April
1990. 182

[BAN94] Michael Burrows, Martı́n Abadi, and Roger Needham. A scope of a
logic of authentication. appendix to DEC SRC research report 39, Dig-
ital Equipment Corporation Systems Research Center, May 13, 1994.

56, 179
[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum dis-

closure proofs of knowledge. Journal of Computer and System Sciences,
37(2):156–189, October 1988. 113

[BCLL91] Gilles Brassard, Claude Crépeau, Sophie Laplante, and Christian
Léger. Computationally convincing proofs of knowledge. In C. Chof-
frut and M. Jantzen, editors, Proceedings of the 8th Annual Symposium on
Theoretical Aspects of Computer Science, pages 251–262, 1991.

[BDG88] José Luis Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural
Complexity. Monographs on Theoretical Computer Science. Springer-
Verlag, Berlin / Heidelberg, 1988. 20

[Ber04] Jules J. Berman. Zero-check, a zero-knowledge protocol for reconciling
patient identities across institutions. Archives of Pathology and Laboratory
Medicine, 128(3):344–346, 2004. 115, 187

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 103–
112, Chicago, Illinois, 2–4 1988. 105

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge.

213

In E.F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, volume
740 of Lecture Notes in Computer Science, pages 390–420, Berlin, 1993.
Springer-Verlag. 105

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental
cryptography: the case of hashing and signing. In Y.G. Desmedt, editor,
Advances in Cryptology - CRYPTO ’94, volume 839 of Lecture Notes in
Computer Science, Berlin, 1994. Springer-Verlag. . 38, 40, 45

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental
cryptography with application to virus protection. In Proceedings of the
27th Annual Symposium on the Theory of Computing. ACM, 1995. 38, 45

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil Vadhan, and Ke Yan. On the (im)possibility of obfus-
cating programs. Technical Report TR01-057, Electronic Colloquium
on Computational Complexity, 2001. 37

[BGR95] Mihir Bellare, Roch Guerin, and Phillip Rogaway. XOR MACs: New
methods for message authentication using finite pseudorandom func-
tions. In D. Coppersmith, editor, Advances in Cryptology - CRYPTO ’95,
volume 963 of Lecture Notes in Computer Science, pages 15–28, Berlin,
1995. Springer-Verlag. 39

[Bin92] Ken Binmore. Fun and Games: a Text on Game Theory. DC Heath &
Company, Lexington, MA, 1992. 5

[BKK95] Pieter A. Boncz, Fred Kwakkel, and Martin L. Kersten. High perfor-
mance support for OO traversals in Monet. In Proceedings British Na-
tional Conference on Databases (BNCOD96), volume 1094 of Lecture Notes
in Computer Science, pages 152–169, Berlin, 1995. Springer-Verlag. 100

[BM94] Colin Boyd and Wenbo Mao. On a limitation of BAN logic. In T. Helle-
seth, editor, Advances in Cryptology - EUROCRYPT ’93, volume 765 of
Lecture Notes in Computer Science, pages 240–247, Berlin, 1994. Springer-
Verlag. 182

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-
free hashing: Incrementality at reduced cost. In W. Fumy, editor,
Advances in Cryptology- EUROCRYPT 97 Proceedings, volume 1233.
Springer-Verlag, 1997. 37, 38, 39

[Bon02] Pieter A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications. PhD thesis, Universiteit van Amsterdam, Ams-
terdam, The Netherlands, May 2002. 100

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In Proceedings of the
First Annual Conference on Computer and Communications Security. ACM,
1993. 36

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. A fair and
efficient solution to the socialist millionaires’ problem. Discrete Applied
Mathematics, 111(1-2):23–36, 2001. 107, 113, 114, 116

[CC04] Tim Churches and Peter Christen. Some methods for blindfolded
record linkage. BMC Medical Informatics and Decision Making, 4(9), June
2004. 115, 187

214 Bibliography

[CD05a] Mika Cohen and Mads Dam. A completeness result for BAN logic.
In Prococeedings of Methods for Modalities 4, Berlin, December 2005.

47, 66, 182
[CD05b] Mika Cohen and Mads Dam. Logical omniscience in the semantics

of ban logics. In Andrei Sabelfeld, editor, Proceedings of the Founda-
tions of Computer Security ’05 — FCS’05, pages 121–132, Chicago, 2005.

47, 66, 182
[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle

methodology, revisited. In Proceedings of 30th Annual ACM Symposium
on the Theory of Computing, pages 209–218. ACM, 1998. 37

[CGKS98] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Su-
dan. Private information retrieval. Journal of the ACM, 45(6):965–982,
November 1998. 100

[CH06] Łukasz Chmielewski and Jaap-Henk Hoepman. Fuzzy private match-
ing. in submission, 2006. 189

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Communications of the ACM, 24(2):84–88, February
1981. 99

[Cha85] David Chaum. Security without identification: transaction systems
to make big brother obsolete. Communications of the ACM, 28(10):1030–
1044, October 1985. 99

[Cha92] David Chaum. Achieving electronic privacy. Scientific American, pages
96–101, 1992. 99

[CK85] George P. Copeland and Setrag N. Khoshafian. A decomposition stor-
age model. In S.B. Navathe, editor, Proceedings of the 1985 ACM SIG-
MOD International Conference on Management of Data, Austin, pages 268–
279, New York, NY, USA, 1985. ACM Press. 100

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-
way probabilistic hash functions (preliminary version). In Proceedings
of the 30th Annual ACM Symposium on the Theory of Computing, pages
131–140, Dallas, 1998. 43

[Cod70] Edgar F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970. 100

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences, 18(2):143–154, 1979.

35
[Dam88] Ivan B. Damgård. Collision free hash functions and public key signa-

ture schemes. In D. Chaum and W.L. Price, editors, Advances in Cryptol-
ogy - EUROCRYPT ’87, volume 304 of Lecture Notes in Computer Science,
pages 203–216, Berlin, 1988. Springer-Verlag. 42

[Dam90] Ivan B. Damgård. A design principle for hash functions. In Gilles
Brassard, editor, Advances in Cryptology - CRYPTO ’89, volume 435 of
Lecture Notes in Computer Science, pages 416–427, Berlin, 1990. Springer-
Verlag. 38

[Dam97] Ivan B. Damgård. On the existence of statistically hiding bit commit-
ment schemes and fail-stop signatures. Journal of Cryptology, 10(3):163–

215

194, July 1997. 43
[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD160:

A strengthened version of RIPEMD. In Fast Software Encryption, vol-
ume 1039 of Lecture Notes in Computer Science, pages 71–82, 1996. 38, 40

[DDMP03] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic.
Secure protocol composition. In Proceedings of the 2003 ACM Workshop
on Formal Methods in Security Engineering, pages 11–23, New York, NY,
USA, 2003. ACM Press. 174

[Dek00] Anthony H. Dekker. C3PO: a tool for automatic sound cryptographic
protocol analysis. In Proceedings of the 13th IEEE Computer Security
Foundations Workshop — CFSW-13, pages 77–87. IEEE Computer So-
ciety Press, 2000. 47, 66, 180, 181

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

29, 42, 55
[DH05] AnHai Doan and Alon Y. Halevy. Semantic integration research in the

database community: A brief survey. AI Magazine, 26(1):83–94, Spring
2005. 82, 84

[vD03] Hans P. van Ditmarsch. The russian cards problem. Studia Logica,
75:31–62, 2003. 107

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y.
Halevy. Learning to map between ontologies on the semantic web. In
Proceedings of the 11th international conference on World Wide Web, New
York, NY, USA, 2002. ACM Press. 100

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In E.F. Brickell, editor, Advances in Cryptology - CRYPTO ’92,
volume 740 of Lecture Notes in Computer Science, pages 139–147, Berlin,
1993. Springer-Verlag. 43

[DPP94] Ivan B. Damgård, Torben Pedersen, and Birgit Pfitzmann. On the
existence of statistically hiding bit commitment schemes and fail-stop
signatures. In D.R. Stinson, editor, Advances in Cryptology - CRYPTO
’93, volume 773 of Lecture Notes in Computer Science, pages 250–265,
Berlin, 1994. Springer-Verlag. 43

[DQB95] Liliane Dusserre, Catherine Quantin, and Hocine Bouzelat. A one
way public key cryptosystem for the linkage of nominal files in epi-
demiological studies. Medinfo, 8(1):644–647, 1995. 115, 187

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, 29(2):198–208, March
1983. 23, 48

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized
protocol for signing contracts. Communications of the ACM, 28(6):637–
647, June 1985. 22

[ESAG02] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal,
and Johannes Gehrke. Privacy preserving mining of association rules.
In Proceedings of the 8th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), July 2002. 99

216 Bibliography

[Fei73] Horst Feistel. Cryptography and computer privacy. Scientific American,
228(5):15–23, May 1973. 43

[FFS87] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of
identity. In Proceedings of the nineteenth annual ACM conference on The-
ory of computing, pages 210–217, New York, NY, USA, June 1987. ACM
Press.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of
identity. Journal of Cryptology, 1(2):77–94, June 1988.

[FGR92] Joan Feigenbaum, Eric Grosse, and James A. Reeds. Cryptographic
protection of membership lists. Newsletter of the International Association
for Cryptologic Research, 9(1):16–20, 1992. 99, 112

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y.
Vardi. Reasoning about Knowledge. MIT Press, Cambridge, MA, 1995.

47, 175
[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure

computation. In Proceedings of the Twentsixth Annual ACM Symposium
on Theory of Computing, pages 554–563. ACM Press, 1994. 24

[FLW91] Joan Feigenbaum, Mark Y. Liberman, and Rebecca N. Wright. Cryp-
tographic protection of databases and software. In Joan Feigenbaum
and Michael Merritt, editors, Distributed Computing and Cryptography,
volume 2, pages 161–172, 1991. 99, 112

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient
private matching and set intersection. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, vol-
ume 2037 of Lecture Notes in Computer Science, pages 1–19, Berlin, 2004.
Springer-Verlag. 111, 114, 116, 188, 189

[FNS75] Horst Feistel, W.A. Notz, and J. Lynn Smith. Some cryptographic
techniques for machine-to-machine data communications. Proceedings
of the IEEE, 63(11):1545–1554, 1975. 43

[FNW96] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing informa-
tion without leaking it. Communications of the ACM, 39(5):77–85, 1996.

99, 106, 107, 114, 115, 172
[FS90] Uriel Feige and Adi Shamir. Witness indistinguishability and witness

hiding protocols. In Proceedings of the 22nd Annual Symposium on the
Theory of Computing, pages 416–426, New York City, 1990. ACM Press.

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley, 2003.
19, 46

[Get63] Edmund L. Gettier. Is justified true belief knowledge? Analysis,
23:121–123, 1963. 105

[GH05] Flavio D. Garcia and Jaap-Henk Hoepman. Off-line karma: A decen-
tralized currency for peer-to-peer and grid applications. In John Ioan-
nidis, Angelos Keromytis, and Moti Yung, editors, Applied Cryptogra-
phy and Network Security: Third International Conference, ACNS 2005,
volume 3531 of Lecture Notes in Computer Science, pages 364–377, Berlin
/ Heidelberg, 2005. Springer. 43

217

[GK05] Michael Grüninger and Joseph B. Kopena. Semantic integration
through invariants. AI Magazine, 26(1):11–20, Spring 2005. 82, 84

[GKSG91] Virgil D. Gligor, Rajashekar Kailar, Stuart G. Stubblebine, and
Li Gong. Logics for cryptographic protocols — virtues and limitations.
In Proceedings of the IEEE Computer Security Foundations Workshop IV
(CFSW IV), pages 219–226, Los Alamitos, 1991. IEEE Computer Society
Press. 181

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems. In Proceedings of the Sev-
enteenth Annual ACM Symposium on Theory of Computing, pages 291–
304, Providence, Rhode Island, 1985. 24, 25, 105

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity or all languages in NP have zero-knowledge
proofs. Journal of the ACM, 38:691–729, 1991. 26

[GNY90] Li Gong, Roger Needham, and Raphael Yahalom. Reasoning about
belief in cryptographic protocols. In Deborah Cooper and Teresa Lunt,
editors, Proceedings 1990 IEEE Symposium on Research in Security and Pri-
vacy, pages 234–248, Los Angeles, 1990. IEEE Computer Society Press.

47, 50, 52, 66, 72, 75, 180, 183, 184, 186
[Gol02] Oded Goldreich. Zero-knowledge twenty years after its invention.

Technical report, Department of Computer Science, Weizmann Insti-
tute of Science, 2002. 25, 26, 105

[GS91] Klaus Gaarder and Einar Snekkenes. Applying a formal analysis tech-
nique to the CCITT X.509 strong two-way authentication protocol.
Journal of Cryptology, 3(2):81–98, January 1991. 181

[GSG99] Stefanos Gritzalis, Diomidis Spinellis, and Panagiotis Georgiadis. Se-
curity protocols over open networks and distributed systems: Formal
methods for their analysis, design, and verification. Computer Commu-
nications, 22(8):697–709, May 1999. 48

[Gua98] Nicola Guarino. Formal ontology and information systems. In Nicola
Guarino, editor, Proceedings of the 1st International Conference on Formal
Ontologies in Information Systems, pages 3–15, Trento, Italy, June 1998.
IOS Press. 100

[Gut01] Joshua D. Guttman. Key compromise, strand spaces, and the authen-
tication tests. Electronic Notes in Theoretical Computer Science, 47:1–21,
2001. 49

[Gut02] Joshua D. Guttman. Security protocol design via authentication tests.
In Proceedings of the 15th IEEE Computer Security Foundations Workshop
(CSFW’05), pages 92–103, Los Alamitos, 2002. IEEE Computer Society
Press. 49

[Hei05] Dorothee Heisenberg. Negotiating Privacy: The European Union, the
United States and Personal Data Protection. Lynne Rienner Publishers,
2005. 104

[Hel61] Joseph Heller. Catch-22. Simon & Schuster, 1961.
[Hid04] Jan-Willem Hiddink. Informatie als waardegoed. Master’s thesis,

Rijksuniversiteit Groningen, August 2004. 90

218 Bibliography

[HIM+04] Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter Mork,
Dan Suciu, and Igor Tatarinov. The Piazza peer data management sys-
tem. IEEE Transactions on Knowledge and Data Engineering, 16(7):787–
798, July 2004. 88

[HM84] Joseph Y. Halpern and Yoram Moses. Knowledge and common
knowledge in a distributed environment. In Tiko Kameda, Jayadev
Misra, Joseph Peters, and Nicola Santoro, editors, Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing,
pages 50–61. ACM, ACM Press, 1984. 56

[HM90] Joseph Y. Halpern and Yoram Moses. Knowledge and common
knowledge in a distributed environment. Journal of the ACM, 37(3):549–
587, 1990. 56

[Hoa69] C.A.R. (Tony) Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, October 1969. 52

[HPvdM03] Joseph Y. Halpern, Riccardo Pucella, and Ron van der Meyden.
Revisiting the foundations of authentication logics. Manuscript, 2003.

66, 182
[HS06] Theo Hooghiemstra and Dirk Schravendeel. Burger service nummer

werkt. NRC Handelsblad, page 7, June 27 2006. 15
[HT07] Marc Hooghe and Wouter Teepe. Party profiles on the web. New Media

& Society, to appear, 2007. 10
[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes

provably as secure as subset sum. Journal of Cryptology, 9(4):199–216,
1996. 39

[Jac04] Bart Jacobs. Semantics and logic for security protocols. Manuscript,
September 2004. 181

[Jac05] Bart Jacobs. Select before you collect. Ars Aequi, 54(12):1006–1009, De-
cember 2005. 6, 16

[JLS02] Stanislaw Jarecki, Patrick Lincoln, and Vitaly Shmatikov. Negotiated
privacy (extended abstract). In Proceedings of the International Sympo-
sium of Software Security (ISSS), pages 96–111, 2002. 99

[JY96] Markus Jakobsson and Moti Yung. Proving without knowing: On
oblivious, agnostic and blindfolded provers. In N. Koblitz, editor,
Advances in Cryptology - CRYPTO ’96, volume 1109 of Lecture Notes
in Computer Science, pages 186–200, Berlin, 1996. Springer-Verlag.

107, 113, 114, 116
[KG91] Rajashekar Kailar and Virgil D. Gligor. On belief evolution in authen-

tication protocols. In Proceedings of the IEEE Computer Security Founda-
tions Workshop IV (CFSW IV), pages 103–116, Los Alamitos, 1991. IEEE
Computer Society Press. 181

[KM05] Aggelos Kiayias and Antonina Mitrofanova. Testing disjointness of
private datasets. In Proceedings of Financial Cryptography 2005, 2005.

113, 114, 115
[KM06] Aggelos Kiayias and Antonina Mitrofanova. Syntax-driven private

evaluation of quantified membership queries. In Proceedings of Applied
Cryptography and Network Security 2006, 2006. 109, 111, 114, 115

219

[Koo03] Barteld Kooi. Knowledge, Chance and Change. PhD thesis, Institute for
Logic, Language and Communication, 2003. xv

[KP98] Joe Kilian and Erez Petrank. Identity escrow. In H. Krawczyk, editor,
Advances in Cryptology - CRYPTO ’98, volume 1462 of Lecture Notes in
Computer Science, pages 169–185, Berlin, 1998. Springer-Verlag. 99

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic com-
munication complexity of set intersection. SIAM Journal on Discrete
Mathematics, 5(4):545–557, 1992. 118, 188, 189

[KS04] Lea Kissner and Dawn Song. Private and threshold set-intersection.
Technical Report CMU-CS-04-182, School of Computer Science, Carne-
gie Mellon University, Pittsburgh, PA, 2004. 111, 114, 116

[Kus97] Eyal Kushilevitz. Communication Complexity. Cambridge University
Press, 1997. 21

[KW94] Volker Kessler and Gabriele Wedel. AUTLOG – an advanced logic of
authentication. In Proceedings of the 7th Computer Security Foundations
Workshop (CSFW’94), pages 90–99, Los Alamitos, 1994. IEEE Computer
Society Press. 47, 66, 180, 181

[Lip04] Helger Lipmaa. Verifiable homomorphic oblivious transfer and pri-
vate equality test. In Chi Sung Liah, editor, Advances in Cryptology -
ASIACRYPT 2003, Lecture Notes in Computer Science, pages 416–433,
Berlin, 2004. Springer-Verlag. 22

[LLM05] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. Private item-
set support counting. In Wenbo Mao, Javier Lopez, and Guilin Wang,
editors, Information and Communications Security: 7th International Con-
ference, ICICS 2005, volume 3783 of Lecture Notes in Computer Science,
pages 97–111, Berlin / Heidelberg, December 2005. Springer-Verlag.

111, 114, 116
[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-

key protocol using FDR. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 1055, pages 147–166, Berlin, 1996.
Springer-Verlag. 76, 181

[LP00] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining.
In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, vol-
ume 1880 of Lecture Notes in Computer Science, pages 36–47, Berlin, 2000.
Springer-Verlag. 98

[MB93] Wenbo Mao and Colin Boyd. Towards formal analysis of security pro-
tocols. In Proceedings of the IEEE Computer Security Foundations Work-
shop VI (CFSW VI), pages 147–158, Los Alamitos, 1993. IEEE Computer
Society Press. 181

[Mer90a] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, ed-
itor, Advances in Cryptology - CRYPTO ’89, volume 435 of Lecture Notes
in Computer Science, pages 218–238, Berlin, 1990. Springer-Verlag. 42

[Mer90b] Ralph C. Merkle. One way hash functions and DES. In Gilles Bras-
sard, editor, Advances in Cryptology - CRYPTO ’89, volume 435 of Lecture
Notes in Computer Science, pages 428–446, Berlin, 1990. Springer-Verlag.

38

220 Bibliography

[Mil75] Gary L. Miller. Riemann’s hypothesis and tests for primality. In Pro-
ceedings of seventh annual ACM symposium on Theory of computing, pages
234–239, New York, NY, USA, 1975. ACM Press. 21

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fair-
play — a secure two-party computation system. In Proceedings of Usenix
Security 2004, 2004. 24

[Mom06] Laurens Mommers. Burger service nummer levert weinig service en
veel risico’s. NRC Handelsblad, page 7, May 30 2006. 15

[Moo05] Chris Mooney. The Republican War on Science. Basic Books, 2005. 5
[MV97a] Mastercard and Visa. The SET Standard Book 1: Business Description,

Version 1.0. SETCO, May 31 1997. 66, 175
[MV97b] Mastercard and Visa. The SET Standard Book 2: Programmer’s Guide,

Version 1.0. SETCO, May 31 1997. 66, 175
[MV97c] Mastercard and Visa. The SET Standard Book 3: Formal Protocol Defini-

tions, Version 1.0. SETCO, May 31 1997. 66, 175
[MvdH95] John-Jules Ch. Meyer and Wiebe van der Hoek. Epistemic Logic for

AI and Computer Science. Cambridge University Press, 1995. 47, 175
[Nat92] National Institute of Standards and Technology (NIST). Proposed fed-

eral information processing standard for secure hash standard. Federal
Register, 57(21):3747–3749, 1992. 40

[Nat02] National Institute of Standards and Technology (NIST). Secure hash
standard. Federal Information Processing Standards, 180(2):1–71, 2002.

30, 40
[Nat04] National Institute of Standards and Technology (NIST). Secure hash

standard, change notice 1. Federal Information Processing Standards,
180(2):72–79, 2004. 40

[Nes90] Dan M. Nessett. A Critique of the Burrows, Abadi and Needham
Logic. ACM SIGOPS Operating Systems Review, 24(2):35–38, April 1990.

47, 66, 181
[NNR99] Moni Naor, Yael Naor, and Omer Reingold. Applied kid cryptogra-

phy or how to convince your children you are not cheating. Journal of
Craptology, 0(1), 1999. 26

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial eval-
uation. In Proceedings of the Thirty-First Annual ACM Symposium on
the Theory of Computing, pages 245–254, New York, 1999. ACM Press.

112, 114, 116
[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-

abelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283 of
Lecture Notes in Computer Science. Springer-Verlag, 2002. 181

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and
their cryptographic applications. In Proceedings of the Twenty First An-
nual ACM Symposium on Theory of Computing. (May 15–17 1989: Seattle,
WA, USA), pages 33–43, New York, 1989. ACM Press. 35

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification
schemes and corresponding signature schemes. In E.F. Brickell, edi-
tor, Advances in Cryptology - CRYPTO ’92, volume 740 of Lecture Notes

221

in Computer Science, pages 31–53, Berlin, 1993. Springer-Verlag. 34
[vO93] Paul C. van Oorschot. Extending cryptographic logics of belief to key

agreement protocols (extended abstract). In Proceedings of the First ACM
Conference on Computer and Communications Security, pages 232–243,
New York, November 1993. ACM Press. 47, 66, 180

[OR94] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT
Press, Cambridge, MA, 1994. 5

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von
Henke. Formal verification for fault-tolerant architectures: Prolegom-
ena to the design of PVS. IEEE Transactions on Software Engineering,
21(2):107–125, February 1995. 181

[Orw49] George Orwell. Nineteen Eighty-Four. Secker & Warburg, London,
1949.

[OYGB04] Christine M. O’Keefe, Ming Yung, Lifang Gu, and Rohan Baxter.
Privacy-preserving data linkage protocols. In Proceedings of the 2004
ACM workshop on Privacy in the electronic society, pages 94–102, New
York, NY, USA, 2004. ACM Press. 115

[Pre93] Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD
thesis, Katholieke Universiteit Leuven, January 1993. 29

[Pre98] Bart Preneel. Cryptographic primitives for information authentication
– state of the art. In Bart Preneel and Vincent Rijmen, editors, State of
the Art and Evolution of Computer Security and Industrial Cryptography,
volume 1528 of Lecture Notes in Computer Science, pages 50–105, Berlin,
1998. Springer-Verlag. 29

[Pre05] Bart Preneel. Hash functions: past, present and future. Invited Lecture
at ASIACRYPT 2005, December 2005. 36

[PvO95] Bart Preneel and Paul C. van Oorschot. MDx-MAC and building fast
MACs from hash functions. In D. Coppersmith, editor, Advances in
Cryptology - CRYPTO ’95, volume 963 of Lecture Notes in Computer Sci-
ence, pages 1–14, Berlin, 1995. Springer-Verlag. 128

[QAD00] Catherine Quantin, François-André Allaert, and Liliane Dusserre.
Anonymous statistical methods versus cryptographic methods in epi-
demiology. International Journal of Medical Informatics, 60(2):177–183,
November 2000. 115, 187

[QBA+98a] Catherine Quantin, Hocine Bouzelat, François-André Allaert,
Anne-Marie Benhamiche, Jean Faivre, and Liliane Dusserre. Auto-
matic record hash coding and linkage for epidemiological follow-up
data confidentiality. Methods of Information in Medicine, 37(3):271–277,
September 1998. 115, 187

[QBA+98b] Catherine Quantin, Hocine Bouzelat, François-André Allaert,
Anne-Marie Benhamiche, Jean Faivre, and Liliane Dusserre. How to
ensure data security of an epidemiological follow-up:quality assess-
ment of an anonymous record linkage procedure. International Journal
of Medical Informatics, 49(1):117–122, March 1998. 115, 187

[QQQ+90] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater,
Michaël Quisquater, Louis Guillou, Marie Annick Guillou, Gaı̈d Guil-

222 Bibliography

lou, Anna Guillou, Gwenolé Guillou, Soazig Guillou, and Tom Berson.
How to explain zero-knowledge protocols to your children. In Gilles
Brassard, editor, Advances in Cryptology - CRYPTO ’89, volume 435 of
Lecture Notes in Computer Science, pages 628–631, Berlin, 1990. Springer-
Verlag. 26

[Rab78] Michael O. Rabin. Digitalized signatures. In R.A. DeMillo, R.J. Lipton,
D.P. Dobkin, and A.K. Jones, editors, Foundations of Secure Computation,
pages 155–166. Academic Press, New York, 1978. 42

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal
of Number Theory, 12(1):128–138, February 1980. 21

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer.
Technical Report TR-81, Aiken Computation Laboratory, Harvard Uni-
versity, 1981. 22

[Raz92] Alexander A. Razborov. On the distributional complexity of disjoint-
ness. Theoretical Computer Science, 106(2):385–390, December 1992.

118, 188
[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to auto-

matic schema matching. VLDB Journal: Very Large Data Bases, 10(4):334–
350, 2001. 82

[RCF04] Pradeep Ravikumar, William W. Cohen, and Stephen E. Fienberg. A
secure protocol for computing string distance metrics. In Proceedings
of the Workshop on Privacy and Security Aspects of Data Mining, pages
40–46, November 2004. 115

[Rei95] Raymond Reiter. On specifying database updates. Journal of Logic Pro-
gramming, 25(1):53–91, 1995. 88

[Riv92] Ronald L. Rivest. The MD5 message-digest algorithm. Technical Re-
port RFC 1321, IETF Network Working Group, 1992. 40

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21(2):120–126, February 1978. 96, 183, 185

[SC01] Paul Syverson and Iliano Cervesato. The logic of authentication pro-
tocols. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design: Tutorial Lectures, number 2171 in Lecture Notes in
Computer Science, pages 63–136. Springer-Verlag, 2001. 48, 54

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley & Sons, New York,
1996. 19, 43, 56

[Sch98] Claus Peter Schnorr. The black-box model for cryptographic primi-
tives. Journal of Cryptology, 11(2):125–140, March 1998. 37

[Sin99] Simon Singh. The Code Book. Doubleday Books, 1999. 19
[SOL06] SOLV, Mosho client care & communications. SOLV FIVE+. SOLV

Attorneys, May 2006. 15
[Spa05] Karin Spaink. Medische geheimen. Nijgh & Van Ditmar, 2005. 16
[Sus06] Ron Suskind. The One Percent Doctrine. Simon & Schuster, 2006. 5
[SvO94] Paul Syverson and Paul C. van Oorschot. On unifying some crypto-

graphic protocol logics. In Proceedings of the 1994 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 14–28. IEEE Com-

223

puter Society Press, May 1994. 47, 51, 66, 180
[SvO96] Paul Syverson and Paul C. van Oorschot. A unified cryptographic

protocol logic. Report 5540-227, Center for High Assurance Computer
Systems, Naval Research Laboratory (NRL CHACS), 1996. 47, 66, 180

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical
techniques for searches on encrypted data. In IEEE Symposium on Secu-
rity and Privacy, pages 44–55, 2000. 100

[Syv91] Paul Syverson. The value of semantics for the analysis of crypto-
graphic protocols. In Proceedings of the IEEE Computer Security Founda-
tions Workshop IV (CFSW IV), pages 228–229, Los Alamitos, 1991. IEEE
Computer Society Press. 180

[Syv93] Paul Syverson. Adding time to a logic of authentication. In Proceedings
of the First ACM Conference on Computer and Communications Security,
pages 97–101, New York, November 1993. ACM Press. 181

[Syv00] Paul Syverson. Towards a strand semantics for authentication logic.
In Stephen Brookes, Achim Jung, Michael Mislove, and Andre Scedrov,
editors, Electronic Notes in Theoretical Computer Science, 20, 2000. 66, 181

[Tee99] Wouter Teepe. Privacy-gerichte workflowanalyse, een verkenning aan
de hand van color-x. Master’s thesis, Rijksuniversiteit Groningen, De-
cember 1999. 10

[Tee04] Wouter Teepe. New protocols for proving knowledge of arbitrary se-
crets while not giving them away. In Sieuwert van Otterloo, Peter
McBurney, Wiebe van der Hoek, and Michael Wooldridge, editors, Pro-
ceedings of the First Knowledge and Games Workshop, pages 99–116, Liver-
pool, July 2004. Department of Computer Science, University of Liver-
pool. 10

[Tee05a] Wouter Teepe. Een classificatie van persoonlijke partijprofielen een
analyse vanuit de kennistechnologie. Samenleving en Politiek, pages 2–
12, March 2005. 10

[Tee05b] Wouter Teepe. Integrity and dissemination control in administrative
applications through information designators. International Journal of
Computer Systems Science & Engineering, 20(5):377–386, September 2005.

10
[Tee05c] Wouter Teepe. Wetenschap kan conflict met Amerika oplossen. het

Financieele Dagblad, page 7, August 15 2005. 10
[Tee06a] Wouter Teepe. BAN logic is not ‘sound’, constructing epistemic log-

ics for security is difficult. In Barbara Dunin-Kȩplicz and Rineke Ver-
brugge, editors, Proceedings of Formal Approaches to Multi-Agent Systems
2006, pages 79–91, August 2006. 10

[Tee06b] Wouter Teepe. Proving possession of arbitrary secrets while not giv-
ing them away, new protocols and a proof in GNY logic. Synthese,
149(2):409–443, March 2006. 10

[TH05] Wouter Teepe and Marc Hooghe. Interactief internetgebruik in tijden
van verkiezingskoorts een analyse van de gebruikers van “wij kiezen
partij voor u” in 2003 en 2004. Samenleving en Politiek, pages 73–88,
March 2005. 10

224 Bibliography

[THG98] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Gutt-
man. Strand spaces: Why is a security protocol correct? In IEEE Sym-
posium on Security and Privacy, 1998. 174, 181

[THG99] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Gutt-
man. Strand spaces: Proving security protocols correct. Journal of Com-
puter Security, 7(2-3):191–230, 1999. 174, 181

[Tom88] Martin Tompa. Zero knowledge interactive proofs of knowledge (a
digest). In Proceedings of the 2nd Conference on Theoretical Aspects of Rea-
soning about Knowledge, pages 1–12, New York, NY, USA, 1988. ACM
Press.

[Tsu92] Gene Tsudik. Message authentication with one-way hash functions.
In Proceedings of IEEE INFOCOM 1992, pages 2055–2059, Los Angeles,
1992. IEEE Computer Society Press. 41

[TvdRO02] Wouter Teepe, Reind P. van de Riet, and Martin Olivier. Work-
flow analyzed for security and privacy in using databases. In Bhavani
Thuraisingham, Reind P. van de Riet, Klaus R. Dittrich, and Zahir Tari,
editors, Data and Application Security, Development and Directions, vol-
ume 73 of IFIP International Federation for Information Processing, pages
271–282, Boston, 2002. Springer. 10

[TvdRO03] Wouter Teepe, Reind P. van de Riet, and Martin Olivier. Work-
flow analyzed for security and privacy in using databases. Journal of
Computer Security, 11(3):353–363, 2003. 10, 75, 99

[TW87] Martin Tompa and Heather Woll. Random self reducibility and zero
knowledge interactive proofs of possession of information. In Pro-
ceedings of the 28th IEEE Symposium on Foundations of Computer Science,
pages 472–482, 1987.

[UG96] Mike Uschold and Michael Grüninger. Ontologies: Principles, meth-
ods, and applications. Knowledge Engineering Review, 11(2):93–155, June
1996. 100

[WC81] Mark N. Wegman and J. Lawrence Carter. New hash functions and
their use in authentication and set equality. Journal of Computer and
System Sciences, 22(3):265–279, 1981. 35, 115

[WK96] Gabriele Wedel and Volker Kessler. Formal semantics for authentica-
tion logics. In Elisa Bertino, Helmut Kurth, Giancarlo Martella, and
Emilio Montolivo, editors, Computer Security — ESORICS 96: 4th Euro-
pean Symposium on Research in Computer Security Rome, number 1146
in Lecture Notes in Computer Science, pages 219–241, Berlin, 1996.
Springer-Verlag. 47, 61, 66, 180, 181

[WSI03] Yodai Watanabe, Junji Shikata, and Hideki Imai. Equivalence between
semantic security and indistinguishability against chosen ciphertext at-
tacks. In Y. Desmedt, editor, Public Key Cryptography - PKC 2003: 6th
International Workshop on Practice and Theory in Public Key Cryptography,
volume 2567 of Lecture Notes in Computer Science, pages 71–84, Berlin,
2003. Springer-Verlag. 108

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash
functions. In Ronald Cramer, editor, Advances in Cryptology - EURO-

225

CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
19–35, Berlin, 2005. Springer-Verlag. 40

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions
in the full SHA-1. In Victor Shoup, editor, Advances in Cryptology -
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
17–36, Berlin, 2005. Springer-Verlag. 40

[Yao79] Andrew C. Yao. Some complexity questions related to distributed
computing. In Proceedings of the eleventh annual ACM symposium on
Theory of Computing, pages 209–213, New York, NY, USA, 1979. ACM
Press. 21

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of
the 23rd IEEE Symposium on Foundations of Computer Science, pages 160–
164, Los Angeles, 1982. IEEE Computer Society Press. 23, 24, 107, 108

[Yao86] Andrew C. Yao. How to generate and exchange secrets. In Proceedings
of the 27th IEEE Symposium on Foundations of Computer Science, pages
162–167, Los Angeles, 1986. IEEE Computer Society Press. 24, 108

Author Index

A

Abadi, Martı́n [AF04],
[AF90], [AG99], [AR02], [AT91],
[BAN88], [BAN89a], [BAN89b],
[BAN89c], [BAN90a], [BAN90b],
[BAN94]

Accorsi, Rafael [ABV01]
Adleman, Leonard [RSA78]
Agrawal, Rakesh . [AES03], [ESAG02]
Agray, Nesria [AvdHdV01]
Aiello, Bill [AIR01]
Allaert, François-André [QAD00],

[QBA+98a], [QBA+98b]
Alonso, Gustavo [ACKM04]
Anderson, Ross [And93]
Antoniou, Grigoris [AvH04]

B

Back, Adam [Bac02]
Balcázar, José Luis [BDG88]
Barak, Boaz [BGI+01]
Basin, David. [ABV01]
Baxter, Rohan [OYGB04]
Bellare, Mihir [BG93],

[BGG94], [BGG95], [BGR95],
[BM97], [BR93]

Benhamiche, Anne-Marie[QBA+98a],
[QBA+98b]

Berman, Jules [Ber04]
Bernstein, Philip [RB01]
Berson, Tom [QQQ+90]
Binmore, Ken [Bin92]
Blum, Manuel [BFM88]
Boncz, Pieter [Bon02], [BKK95]
Bosselaers, Antoon. [DBP96]
Boudot, Fabrice [BST01]
Bouzelat, Hocine [DQB95],

[QBA+98a], [QBA+98b]
Boyd, Colin [BM94], [MB93]

Brassard, Gilles . . [BCC88], [BCLL91]
Burrows, Michael [BAN88],

[BAN89a], [BAN89b], [BAN89c],
[BAN90a], [BAN90b], [BAN94]

C

Canetti, Ran [CGH98], [CMR98]
Carter, Lawrence . . . [CW79], [WC81]
Casati, Fabio [ACKM04]
Cervesato, Iliano [SC01]
Chaum, David [BCC88], [Cha81],

[Cha85], [Cha92]
Chmielewski, Łukasz [CH06]
Chor, Benny. [CGKS98]
Christen, Peter [CC04]
Churches, Tim [CC04]
Codd, Edgar [Cod70]
Cohen, Mika [CD05a], [CD05b]
Cohen, William [RCF04]
Copeland, George [CK85]
Crépeau, Claude . [BCC88], [BCLL91]

D

Dam, Mads [CD05a], [CD05b]
Damgård, Ivan . . . [Dam88], [Dam90],

[Dam97], [DPP94]
Datta, Anupam. [DDMP03]
Dekker, Anthony [Dek00]
Derek, Ante [DDMP03]
Dı́az, Josep [BDG88]
Diffie, Whitfield [DH76]
van Ditmarsch, Hans [vD03]
Doan, AnHai [DH05], [DMDH02]
Dobbertin, Hans [DBP96]
Dolev, Danny [DY83]
Domingos, Pedro [DMDH02]
Dusserre, Liliane [DQB95], [QAD00],

[QBA+98a], [QBA+98b]
Dwork, Cynthia [DN93]

226

227

E

Even, Shimon [EGL85]
Evfimievski, Alexandre [AES03],

[ESAG02]

F

Fagin, Ronald . . [FHMV95], [FNW96]
Faivre, Jean . [QBA+98a], [QBA+98b]
Feige, Uriel [FFS87], [FFS88],

[FKN94], [FS90]
Feigenbaum, Joan . . [AF90], [FLW91],

[FGR92]
Feistel, Horst [Fei73], [FNS75]
Feldman, Paul [BFM88]
Ferguson, Niels [FS03]
Fiat, Amos [FFS87], [FFS88]
Fienberg, Stephen [RCF04]
Fournet, Cédric [AF04]
Freedman, Michael [FNP04]

G

Gaarder, Klaus [GS91]
Gabarró, Joaquim [BDG88]
Garcia, Flavio [GH05]
Gehrke, Johannes [ESAG02]
Georgiadis, Panagiotis [GSG99]
Gettier, Edmund [Get63]
Gligor, Virgil [GKSG91], [KG91]
Goldreich, Oded . . . [BG93], [BGG94],

[BGG95], [BGI+01], [CGH98],
[CGKS98], [EGL85], [GMW91],
[Gol02]

Goldwasser, Shafi [BGG94], [BGG95],
[GMR85]

Gong, Li [GKSG91], [GNY90]
Gordon, Andrew [AG99]
Grüninger, Michael . . [GK05], [UG96]
Gritzalis, Stefanos [GSG99]
Grosse, Eric [FGR92]
Gu, Lifang [OYGB04]
Guarino, Nicola [Gua98]
Guerin, Roch [BGR95]
Guillou (whole family) . . . [QQQ+90]

Guttman, Joshua . . . [Gut01], [Gut02],
[THG98], [THG99]

H

Halevi, Shai [CGH98]
Halevy, Alon . . . [DH05], [DMDH02],

[HIM+04]
Halpern, Joseph [FHMV95], [HM84],

[HM90], [HPvdM03]
van Harmelen, Frank [AvH04]
Heisenberg, Dorothee [Hei05]
Heller, Joseph. [Hel61]
Hellman, Martin [DH76]
von Henke, Friedrich [ORSvH95]
Herzog, Jonathan . [THG98], [THG99]
Hiddink, Jan-Willem [Hid04]
Hoare, Tony. [Hoa69]
van der Hoek, Wiebe . . [AvdHdV01],

[MvdH95]
Hoepman, Jaap-Henk [GH05],

[CH06]
Hooghe, Marc [HT07], [TH05]
Hooghiemstra, Theo [HS06]

I

Imai, Hideki [WSI03]
Impagliazzo, Russell [BGI+01],

[IN96]
Ishai, Yuval [AIR01]
Ives, Zachary [HIM+04]

J

Jacobs, Bart [Jac04], [Jac05]
Jakobsson, Markus [JY96]
Jarecki, Stanislaw [JLS02]

K

Kailar, Rajashekar [GKSG91], [KG91]
Kersten, Martin [BKK95]
Kessler, Volker [KW94], [WK96]
Khoshafian, Setrag [CK85]
Kiayias, Aggelos [KM05], [KM06]
Kilian, Joe [FKN94], [KP98]
Kissner, Lea [KS04]

228 Author Index

Kooi, Barteld [Koo03]
Kopena, Joseph [GK05]
Kuno, Harumi [ACKM04]
Kushilevitz, Eyal . [CGKS98], [Kus97]
Kwakkel, Fred [BKK95]

L

Lamport, Leslie 42
Laplante, Sophie [BCLL91]
Laur, Sven [LLM05]
Léger, Christian [BCLL91]
Lempel, Abraham [EGL85]
Liberman, Mark [FLW91]
Lincoln, Patrick [JLS02]
Lindell, Yehuda. [LP00]
Lipmaa, Helger [Lip04], [LLM05]
Lowe, Gavin [Low96]

M

Machiraju, Vijay [ACKM04]
Madhavan, Jayant [DMDH02],

[HIM+04]
Malkhi, Dahlia [MNPS04]
Mao, Wenbo. [BM94], [MB93]
Mastercard [MV97a], [MV97b],

[MV97c]
Merkle, Ralph . . . [Mer90a], [Mer90b]
van der Meyden, Ron . . . [HPvdM03]
Meyer, John-Jules [MvdH95]
Micali, Silvio [BFM88], [GMR85],

[GMW91]
Micciancio, Daniele[BM97], [CMR98]
Mielikäinen, Taneli [LLM05]
Miller, Gary [Mil75]
Mitchell, John [DDMP03]
Mitrofanova, Antonina [KM05],

[KM06]
Mommers, Laurens [Mom06]
Mooney, Chris [Moo05]
Mork, Peter [HIM+04]
Moses, Yoram. . . [FHMV95], [HM84],

[HM90]

N

Naor, Moni [DN93], [FKN94],

[FNW96], [IN96], [NNR99],
[NP99], [NY89]

Naor, Yael [NNR99]
Needham, Roger[BAN88], [BAN89a],

[BAN89b], [BAN89c], [BAN90a],
[BAN90b], [BAN94], [GNY90]

Nessett, Dan [Nes90]
Nipkow, Tobias [NPW02]
Nisan, Noam [MNPS04]
Nissim, Kobbi [FNP04]
NIST [Nat92], [Nat02], [Nat04]
Notz, W. [FNS75]

O

Okamoto, Tatsuaki [Oka93]
O’Keefe, Christine [OYGB04]
Olivier, Martin [TvdRO03]
van Oorschot, Paul . [vO93], [PvO95],

[SvO94], [SvO96]
Orwell, George [Orw49]
Osborne, Martin [OR94]
Owre, Sam [ORSvH95]

P

Paulson, Lawrence [NPW02]
Pavlovic, Dusko [DDMP03]
Pedersen, Torben [DPP94]
Perrig, Adrian [SWP00]
Petrank, Erez [KP98]
Pfitzmann, Birgit [DPP94]
Pinkas, Benny [FNP04], [LP00],

[MNPS04], [NP99]
Preneel, Bart [DBP96], [Pre05],

[Pre93], [Pre98], [PvO95]
Pucella, Riccardo [HPvdM03]

Q

Quantin, Catherine
[DQB95], [QAD00], [QBA+98a],
[QBA+98b]

Quisquater (whole family)[QQQ+90]

R

Rabin, Michael [Rab78], [Rab80],
[Rab81]

Rackoff, Charles [GMR85]

229

Rahm, Erhard [RB01]
Ravikumar, Pradeep [RCF04]
Razborov, Alexander [Raz92]
Reeds, James. [FGR92]
Reingold, Omer . . [AIR01], [CMR98],

[NNR99]
Reiter, Raymond [Rei95]
van de Riet, Reind [TvdRO03]
Rivest, Ronald [Riv92], [RSA78]
Rogaway, Phillip . . . [AR02], [BGR95],

[BR93]
Rubinstein, Ariel [OR94]
Rudich, Steven [BGI+01]
Rushby, John [ORSvH95]

S

Sahai, Amit [BGI+01]
Schneier, Bruce [FS03], [Sch96]
Schnorr, Claus [Sch98]
Schoenmakers, Berry [BST01]
Schravendeel, Dirk [HS06]
Sella, Yaron [MNPS04]
Shamir, Adi . [FFS87], [FFS88], [FS90],

[RSA78]
Shankar, Natarajan [ORSvH95]
Shikata, Junji [WSI03]
Shmatikov, Vitaly [JLS02]
Singh, Simon [Sin99]
Smith, Lynn [FNS75]
Snekkenes, Einar [GS91]
SOLV Attorneys [SOL06]
Song, Dawn [KS04], [SWP00]
Spaink, Karin [Spa05]
Spinellis, Diomidis [GSG99]
Srikant, Ramakrishnan [AES03],

[ESAG02]
Stubblebine, Stuart [GKSG91]
Suciu, Dan [HIM+04]
Sudan, Madhu [CGKS98]
Suskind, Ron [Sus06]
Syverson, Paul [SC01],

[SvO94], [SvO96], [Syv91],
[Syv93], [Syv00]

T

Tatarinov, Igor [HIM+04]

Teepe, Wouter [HT07], [Tee04],
[Tee05a], [Tee05b], [Tee05c],
[Tee06b], [Tee06a], [Tee99],
[TH05], [TvdRO03]

Thayer Fábrega, Javier [THG98],
[THG99]

Tompa, Martin [Tom88], [TW87]
Traoré, Jacques [BST01]
Tsudik, Gene [Tsu92]
Tuttle, Mark [AT91]

U

Uschold, Mike [UG96]

V

Vadhan, Salil [BGI+01]
Vardi, Moshe [FHMV95]
Viganò, Luca [ABV01]
de Vink, Erik [AvdHdV01]
Visa [MV97a], [MV97b], [MV97c]

W

Wagner, David [SWP00]
Wang, Xiaoyun [WY05], [WYY05]
Watanabe, Yodai [WSI03]
Wedel, Gabriele [KW94], [WK96]
Wegman, Mark [CW79], [WC81]
Wenzel, Markus [NPW02]
Wigderson, Avi [GMW91]
Winkler, Peter [FNW96]
Winternitz, Robert 42
Woll, Heather [TW87]
Wright, Rebecca [FLW91]

Y

Yahalom, Raphael [GNY90]
Yan, Ke . [BGI+01]
Yao, Andrew. [DY83], [Yao79],

[Yao82], [Yao86]
Yin, Yiqun [WYY05]
Yu, Hongbo [WY05], [WYY05]
Yung, Ming [OYGB04]
Yung, Moti [JY96], [NY89]

SIKS Dissertation Series

1998-1 Johan van den Akker (CWI) DEGAS — An Active, Temporal Database of Autonomous
Objects

1998-2 Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-Information
1998-3 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business Conversations

within the Language/Action Perspective
1998-4 Dennis Breuker (UM) Memory versus Search in Games
1998-5 E.W.Oskamp (RUL) Computerondersteuning bij Straftoemeting
1999-1 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated modelling of Quality

Change of Agricultural Products
1999-2 Rob Potharst (EUR) Classification using decision trees and neural nets
1999-3 Don Beal (UM) The Nature of Minimax Search
1999-4 Jacques Penders (UM) The practical Art of Moving Physical Objects
1999-5 Aldo de Moor (KUB) Empowering Communities: A Method for the Legitimate User-Driven

Specification of Network Information Systems
1999-6 Niek J.E. Wijngaards (VU) Re-design of compositional systems
1999-7 David Spelt (UT) Verification support for object database design
1999-8 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of a Multi-Agent

Mechanism for Discrete Reallocation
2000-1 Frank Niessink (VU) Perspectives on Improving Software Maintenance
2000-2 Koen Holtman (TUE) Prototyping of CMS Storage Management
2000-3 Carolien M.T. Metselaar (UVA) Sociaal-organisatorische gevolgen van kennistechnologie; een

procesbenadering en actorperspectief
2000-4 Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge for User Interface

Design
2000-5 Ruud van der Pol (UM) Knowledge-based Query Formulation in Information Retrieval
2000-6 Rogier van Eijk (UU) Programming Languages for Agent Communication
2000-7 Niels Peek (UU) Decision-theoretic Planning of Clinical Patient Management
2000-8 Veerle Coupé (EUR) Sensitivity Analyis of Decision-Theoretic Networks
2000-9 Florian Waas (CWI) Principles of Probabilistic Query Optimization
2000-10 Niels Nes (CWI) Image Database Management System Design Considerations, Algorithms

and Architecture
2000-11 Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database Management
2001-1 Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic Networks
2001-2 Koen Hindriks (UU) Agent Programming Languages: Programming with Mental Models
2001-3 Maarten van Someren (UVA) Learning as problem solving
2001-4 Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with Instance-Based

Boundary Sets
2001-5 Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter of Style
2001-6 Martijn van Welie (VU) Task-based User Interface Design
2001-7 Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information Visualization
2001-8 Pascal van Eck (VU) A Compositional Semantic Structure for Multi-Agent Systems

Dynamics.
2001-9 Pieter Jan ’t Hoen (RUL) Towards Distributed Development of Large Object-Oriented Models,

Views of Packages as Classes

230

231

2001-10 Maarten Sierhuis (UVA) Modeling and Simulating Work Practice. BRAHMS: a multiagent
modeling and simulation language for work practice analysis and design

2001-11 Tom M. van Engers (VU) Knowledge Management: The Role of Mental Models in Business
Systems Design

2002-01 Nico Lassing (VU) Architecture-Level Modifiability Analysis
2002-02 Roelof van Zwol (UT) Modelling and searching web-based document collections
2002-03 Henk Ernst Blok (UT) Database Optimization Aspects for Information Retrieval
2002-04 Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph Markov Model in Data

Mining
2002-05 Radu Serban (VU) The Private Cyberspace Modeling Electronic Environments inhabited by

Privacy-concerned Agents
2002-06 Laurens Mommers (UL) Applied legal epistemology; Building a knowledge-based ontology of

the legal domain
2002-07 Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-Intensive

Applications
2002-08 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring Innovative

E-Commerce Ideas
2002-09 Willem-Jan van den Heuvel (KUB) Integrating Modern Business Applications with

Objectified Legacy Systems
2002-10 Brian Sheppard (UM) Towards Perfect Play of Scrabble
2002-11 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics: Biological and

Organisational Applications
2002-12 Albrecht Schmidt (UVA) Processing XML in Database Systems
2002-13 Hongjing Wu (TUE) A Reference Architecture for Adaptive Hypermedia Applications
2002-14 Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling, Programming and

Verifying Multi-Agent Systems
2002-15 Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams for Workflow

Modelling
2002-16 Pieter van Langen (VU) The Anatomy of Design: Foundations, Models and Applications
2002-17 Stefan Manegold (UVA) Understanding, Modeling, and Improving

Main-Memory Database Performance
2003-01 Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in Weakly Structured

Environments
2003-02 Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive Systems
2003-03 Martijn Schuemie (TUD) Human-Computer Interaction and Presence in Virtual Reality

Exposure Therapy
2003-04 Milan Petkovic (UT) Content-Based Video Retrieval Supported by Database Technology
2003-05 Jos Lehmann (UVA) Causation in Artificial Intelligence and Law — A modelling approach
2003-06 Boris van Schooten (UT) Development and specification of virtual environments
2003-07 Machiel Jansen (UVA) Formal Explorations of Knowledge Intensive Tasks
2003-08 Yongping Ran (UM) Repair Based Scheduling
2003-09 Rens Kortmann (UM) The resolution of visually guided behaviour
2003-10 Andreas Lincke (UvT) Electronic Business Negotiation: Some experimental studies on the

interaction between medium, innovation context and culture
2003-11 Simon Keizer (UT) Reasoning under Uncertainty in Natural Language Dialogue using

Bayesian Networks
2003-12 Roeland Ordelman (UT) Dutch speech recognition in multimedia information retrieval
2003-13 Jeroen Donkers (UM) Nosce Hostem — Searching with Opponent Models
2003-14 Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation Processes across

ICT-Supported Organisations
2003-15 Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems
2003-16 Menzo Windhouwer (CWI) Feature Grammar Systems — Incremental Maintenance of

Indexes to Digital Media Warehouses
2003-17 David Jansen (UT) Extensions of Statecharts with Probability, Time, and Stochastic Timing
2003-18 Levente Kocsis (UM) Learning Search Decisions
2004-01 Virginia Dignum (UU) A Model for Organizational Interaction: Based on Agents, Founded in

Logic

232 SIKS Dissertation Series

2004-02 Lai Xu (UvT) Monitoring Multi-party Contracts for E-business
2004-03 Perry Groot (VU) A Theoretical and Empirical Analysis of Approximation in Symbolic

Problem Solving
2004-04 Chris van Aart (UVA) Organizational Principles for Multi-Agent Architectures
2004-05 Viara Popova (EUR) Knowledge discovery and monotonicity
2004-06 Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling Techniques
2004-07 Elise Boltjes (UM) Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar

abstract denken, vooral voor meisjes
2004-08 Joop Verbeek (UM) Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale

politiële gegevensuitwisseling en digitale expertise
2004-09 Martin Caminada (VU) For the Sake of the Argument; explorations into argument-based

reasoning
2004-10 Suzanne Kabel (UVA) Knowledge-rich indexing of learning-objects
2004-11 Michel Klein (VU) Change Management for Distributed Ontologies
2004-12 The Duy Bui (UT) Creating emotions and facial expressions for embodied agents
2004-13 Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who Know how to Play
2004-14 Paul Harrenstein (UU) Logic in Conflict. Logical Explorations in Strategic Equilibrium
2004-15 Arno Knobbe (UU) Multi-Relational Data Mining
2004-16 Federico Divina (VU) Hybrid Genetic Relational Search for Inductive Learning
2004-17 Mark Winands (UM) Informed Search in Complex Games
2004-18 Vania Bessa Machado (UVA) Supporting the Construction of Qualitative Knowledge Models
2004-19 Thijs Westerveld (UT) Using generative probabilistic models for multimedia retrieval
2004-20 Madelon Evers (Nyenrode) Learning from Design: facilitating multidisciplinary design

teams
2005-01 Floor Verdenius (UVA) Methodological Aspects of Designing Induction-Based Applications
2005-02 Erik van der Werf (UM) AI techniques for the game of Go
2005-03 Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation of Language
2005-04 Nirvana Meratnia (UT) Towards Database Support for Moving Object data
2005-05 Gabriel Infante-Lopez (UVA) Two-Level Probabilistic Grammars for Natural Language

Parsing
2005-06 Pieter Spronck (UM) Adaptive Game AI
2005-07 Flavius Frasincar (TUE) Hypermedia Presentation Generation for Semantic Web Information

Systems
2005-08 Richard Vdovjak (TUE) A Model-driven Approach for Building Distributed Ontology-based

Web Applications
2005-09 Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic Web Languages
2005-10 Anders Bouwer (UVA) Explaining Behaviour: Using Qualitative Simulation in Interactive

Learning Environments
2005-11 Elth Ogston (VU) Agent Based Matchmaking and Clustering — A Decentralized Approach to

Search
2005-12 Csaba Boer (EUR) Distributed Simulation in Industry
2005-13 Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen
2005-14 Borys Omelayenko (VU) Web-Service configuration on the Semantic Web; Exploring how

semantics meets pragmatics
2005-15 Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes
2005-16 Joris Graaumans (UU) Usability of XML Query Languages
2005-17 Boris Shishkov (TUD) Software Specification Based on Re-usable

Business Components
2005-18 Danielle Sent (UU) Test-selection strategies for probabilistic networks
2005-19 Michel van Dartel (UM) Situated Representation
2005-20 Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and Perspectives
2005-21 Wijnand Derks (UT) Improving Concurrency and Recovery in Database Systems by

Exploiting Application Semantics
2006-01 Samuil Angelov (TUE) Foundations of B2B Electronic Contracting
2006-02 Cristina Chisalita (VU) Contextual issues in the design and use of information technology in

organizations
2006-03 Noor Christoph (UVA) The role of metacognitive skills in learning to solve problems

233

2006-04 Marta Sabou (VU) Building Web Service Ontologies
2006-05 Cees Pierik (UU) Validation Techniques for Object-Oriented Proof Outlines
2006-06 Ziv Baida (VU) Software-aided Service Bundling — Intelligent Methods & Tools for Graphical

Service Modeling
2006-07 Marko Smiljanic (UT) XML schema matching — balancing efficiency and effectiveness by

means of clustering
2006-08 Eelco Herder (UT) Forward, Back and Home Again — Analyzing User Behavior on the Web
2006-09 Mohamed Wahdan (UM) Automatic Formulation of the Auditor’s Opinion
2006-10 Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems
2006-11 Joeri van Ruth (UT) Flattening Queries over Nested Data Types
2006-12 Bert Bongers (VU) Interactivation — Towards an e-cology of people, our technological

environment, and the arts
2006-13 Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information Exchanging Agents
2006-14 Johan Hoorn (VU) Software Requirements: Update, Upgrade, Redesign — towards a Theory

of Requirements Change
2006-15 Rainer Malik (UU) CONAN: Text Mining in the Biomedical Domain
2006-16 Carsten Riggelsen (UU) Approximation Methods for Efficient Learning of Bayesian Networks
2006-17 Stacey Nagata (UU) User Assistance for Multitasking with Interruptions on a Mobile Device
2006-18 Valentin Zhizhkun (UVA) Graph transformation for Natural Language Processing
2006-19 Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic Approach
2006-20 Marina Velikova (UvT) Monotone models for prediction in data mining
2006-21 Bas van Gils (RUN) Aptness on the Web
2006-22 Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation
2006-23 Ion Juvina (UU) Development of Cognitive Model for Navigating on the Web
2006-24 Laura Hollink (VU) Semantic Annotation for Retrieval of Visual Resources
2006-25 Madalina Drugan (UU) Conditional log-likelihood MDL and Evolutionary MCMC
2006-26 Vojkan Mihajlovic (UT) Score Region Algebra: A Flexible Framework for Structured

Information Retrieval
2006-27 Stefano Bocconi (CWI) Vox Populi: generating video documentaries from semantically

annotated media repositories
2006-28 Borkur Sigurbjornsson (UVA) Focused Information Access using XML Element Retrieval
2007-01 Kees Leune (UvT) Control and Service-Oriented Architectures
2007-02 Wouter Teepe (RUG) Reconciling Information Exchange and Confidentiality — A Formal

Approach

About the Author

Wouter Teepe was born in Darmstadt, Germany on February 23, 1977, and
holds the Dutch nationality. In January 2000, he obtained his Master’s degree at
the University of Groningen (Technische Cognitiewetenschap). Since then, Wouter
Teepe has been affiliated to the department of Artificial Intelligence of the Uni-
versity of Groningen. First only as a lecturer in Knowledge Systems, and since
June 2002 also as a PhD student. He finished working on his PhD thesis in
August 2006.

Wouter Teepe has two main research interests. The first reseach interest is
security, privacy and databases, which is reflected in the thesis at hand.

The other research interest is in online expert systems for voting advice
during elections (“party profile websites”). Since 1998, Wouter Teepe has built
such expert systems for Planet Internet (an internet service provider), Kennis-
net (a portal site for schools), Politicsinfo (a portal site about politics) and De
Standaard (a leading newspaper in Belgium).

Wouter Teepe is an editor of the Journal of Information Technology & Poli-
tics (http://www.jitp.net).

Selected Publications

[Tee99] Wouter Teepe. Privacy-gerichte workflowanalyse, een verkenning
aan de hand van color-x. Master’s thesis, Rijksuniversiteit Gronin-
gen, December 1999.

[TvdRO03] Wouter Teepe, Reind P. van de Riet, and Martin Olivier. Work-
flow analyzed for security and privacy in using databases. Journal of
Computer Security, 11(3):353–363, 2003.

[Tee05b] Wouter Teepe. Integrity and dissemination control in administrative
applications through information designators. International Journal
of Computer Systems Science & Engineering, 20(5):377–386, September
2005.

[Tee06b] Wouter Teepe. Proving possession of arbitrary secrets while not giv-
ing them away, new protocols and a proof in GNY logic. Synthese,
149(2):409–443, March 2006.

[Tee06a] Wouter Teepe. BAN logic is not ‘sound’, constructing epistemic log-
ics for security is difficult. In Barbara Dunin-Kȩplicz and Rineke Ver-
brugge, editors, Proceedings of Formal Approaches to Multi-Agent Sys-
tems 2006, pages 79–91, August 2006.

[HT07] Marc Hooghe and Wouter Teepe. Party profiles on the web. New
Media & Society, to appear, 2007.

234

http://www.jitp.net

Samenvatting

Het thema van de bescherming van persoonsgegevens is actueler dan ooit. Een
paradoxale eigenschap van persoonsgegevens is dat zowel het geheim houden,
als het uitwisselen ervan gedaan kan worden onder het argument van ‘veilig-
heid’. Het geheim houden van persoonsgegevens verhoogt veiligheid doordat
deze gegevens niet misbruikt kunnen worden. Het uitwisselen van persoons-
gegevens verhoogt veiligheid omdat het opsporingsdiensten helpt criminelen
en terroristen te vangen. Zowel de argumenten voor het geheim houden van
gegevens, als die voor het uitwisselen van gegevens zijn valide.

Het probleem is helder: het uitwisselen van gegevens en het geheim hou-
den van gegevens lijkt niet, of althans moeilijk, samen te kunnen gaan.

Dit is niet alleen een probleem in de discussie tussen de voorvechters van
privacy en de voorstanders van verregaande opsporingsbevoegdheden. Ook
opsporingsdiensten zelf worstelen met het spanningsveld van uitwisseling
versus geheimhouding: het is makkelijker een subject (bijvoorbeeld een ver-
dachte) in de gaten te houden als hij of zij daar niet op beducht is. Wanneer
het subject weet dat hij onderwerp van onderzoek is, kan hij of zij bijvoor-
beeld mogelijk bezwarende bewijzen vernietigen. Hoe meer mensen binnen
een opsporingsorganisatie weet hebben van een lopend onderzoek, hoe groter
de kans is dat er gelekt wordt naar het subject. Aan de andere kant, hoe meer
mensen binnen opsporingsdienst weet hebben van een lopend onderzoek, hoe
meer mensen kunnen meehelpen met dat onderzoek.

Het hoofddoel van dit proefschift is om te onderzoeken of het mogelijk is
om oplossingen voor dit spanningsveld te vinden. De resultaten van het on-
derzoek zijn van fundamentele en praktische waarde. Aan de fundamentele
kant laten we zien, dat een een aantal problemen überhaupt oplosbaar is. Aan
de praktische kant laten we zien dat deze oplossingen niet slechts theoretisch
zijn, maar ook zonder al te veel problemen kunnen worden toegepast om be-
staande, praktische problemen op te lossen. De oplossingen die gepresenteerd
worden in dit proefschift bieden beleidsmakers de ruimte om de bescherming
van privacy enerzijds, en het uitwisselen van persoonsgegevens voor terroris-
mebestrijding anderzijds, goed samen te laten gaan. In plaats van of/of, is er
de mogelijkheid voor en/en, als de beleidsmakers het willen.

Enige relativering is hierbij wel op zijn plaats. Niet alle problemen rond-
om privacy en uitwisseling van persoonsgegevens kunnen worden opgelost,
slechts enkele. Er is echter geen enkele reden om te veronderstellen dat dit
proefschrift de mogelijkheden om dit type problemen op te lossen, heeft uit-
geput. Dit proefschift is slechts een begin: we laten zien dat het überhaupt
mogelijk is dit type problemen op te lossen; toekomstig onderzoek kan het pa-
let van oplossingen verder uitbreiden.

235

236 Samenvatting

In hoofdstuk 1 bespreken we de context van het onderzoek: welke maat-
schappelijke kwesties zijn er, waarbij zowel geheimhouding als uitwisseling
van persoonsgegevens kan geschieden onder het motto van ‘veiligheid’? Wat
hebben deze kwesties gemeen? Ook wordt er van een praktijktoepassing uit
de doeken gedaan hoe deze uitwisseling op het moment georganiseerd is. De-
ze toepassing is het uitwisselen van opsporingsinformatie tussen regiokorpsen
van de Nederlandse politie. Verder besteden we aandacht aan de vraag of cen-
trale opslag van persoonsgegevens wenselijk is. Uiteraard wordt in hoofdstuk
1 de structuur van dit proefschrift nader uitgelegd.

Omdat de lezer wellicht niet vertrouwd is met de theoretische achtergron-
den die te maken hebben met ‘computerbeveiliging’, bevat hoofdstuk 2 een
bondige samenvatting en uitleg van veel begrippen en onderzoeksvelden waar
dit proefschrift veelvuldig naar verwijst. Daaronder valt een aantal relatief
brede onderwerpen, zoals encryptie, authorisatie, authenticatie, complexiteits-
theorie en probabilistische algorithmen, maar ook een aantal vrij specialisti-
sche onderwerpen, zoals oblivious transfer, secure multiparty computation en zero-
knowledge proofs.

De cryptografische hashfunctie heeft een dermate belangrijke rol in dit proef-
schrift, dat hoofdstuk 3 in zijn geheel gewijd is aan het bespreken van de eigen-
schappen van de cryptografische hashfunctie. Kort gezegd is een cryptografi-
sche hashfunctie een gereedschap om een soort vingerafdruk te maken van een
blok gegevens. Deze vingerafdruk kan gebruikt worden om de informatie te
identificeren of te herkennen, maar verklapt verder niets over die gegevens.
Technisch gezien heeft het nogal wat voeten in de aarde om precies te defi-
niëren wat een cryptografische hashfunctie is, en hoe je er eentje zou moeten
maken. In dit kader bespreken we niet-incrementaliteit, een nieuwe, optionele
eigenschap van cryptografische hashfuncties.

Een ander belangrijk gereedschap zijn authenticatielogica’s, dat zijn logica’s
waarmee je cryptografische protocollen kunt analyseren. In hoofdstuk 4 wordt
uitgelegd hoe authenticatielogica’s in elkaar zitten en hoe je ze kunt gebruiken.
De oudste authenticatielogica is BAN-logica, en andere authenticatielogica’s,
zoals GNY-logica, zijn afgeleid van BAN-logica.

In hoofdstuk 5 laten we zien dat BAN-logica een fout bevat. Deze fout in
BAN-logica is dat cryptografische hashfuncties niet juist gemodelleerd wor-
den. Dit demonstreren we aan de hand van een vrij eenvoudig protocol. Door
deze fout blijkt het mogelijk om binnen BAN-logica om uit ware feiten onjuiste
feiten af te leiden, wat natuurlijk zeer ongewenst is. Andere authenticatielogi-
ca’s, zoals GNY-logica, bevatten deze fout niet.

Authenticatielogica’s zijn niet altijd helemaal geschikt om bepaalde proto-
collen te analyseren. Ook de protocollen die in dit proefschrift worden geana-
lyseerd kunnen niet zonder meer geanalyseerd worden. Om een analyse toch
mogelijk te maken, breiden we in hoofdstuk 6 de GNY-logica zó uit, dat het ge-
schikt is voor onze doeleinden. De modellering van bepaalde eigenschappen
van cryptografische hashfuncties wordt toegevoegd aan GNY-logica. Ook ma-
ken we een aantal zaken in GNY-logica preciezer, waardoor een nauwkeuriger
analyse van protocollen mogelijk is.

237

Het daadwerkelijke beschermen van (persoons)gegevens is het onderwerp
van hoofdstuk 7. Het beschermen van persoonsgegevens wordt moeilijk ge-
maakt door de wens vele informatiebronnen en databases aan elkaar te kop-
pelen. Een gebruikelijke manier om die koppeling tot stand te brengen is het
royaal toegang geven tot databases. Wij stellen een geheel andere aanpak voor,
waarbij informatie juist zoveel mogelijk geı̈soleerd wordt. Deze isolatie helpt
bij de bescherming van de gegevens, maar óók bij het efficiënt koppelen van
de databases. Centraal in onze aanpak staat de information designator, een soort
pseudoniem voor informatie.

Kennisauthenticatie, het vergelijken van gegevens (geheimen) zonder deze te
lekken is het onderwerp van hoofdstuk 8. Er wordt in kaart gebracht waaraan
een communicatieprotocol moet voldoen om de vraag ‘Ken jij de geheimen
die ik ken?’ correct te kunnen beantwoorden — zonder dat de geheimen zelf
vrijgegeven worden, natuurlijk. Een aantal subtiele maar op essentiële punten
verschillende variaties van dit probleem worden uitgelegd. Een belangrijke
variatie is of één geheim wordt vergeleken met vele geheimen (‘1-to-many’), of
dat vele geheimen worden vergeleken met vele geheimen (‘many-to-many’).

In hoofdstuk 9 presenteren we het nieuwe T-1 protocol, dat op zeer effi-
ciënte wijze 1-to-many kennisauthenticatie implementeert. Het T-1 protocol
maakt intensief gebruik van cryptografische hashfuncties. Er is een variant
waarin alleen maar cryptografische hashfuncties gebruikt worden, en een effi-
ciëntere variant waarin ook encryptie gebruikt wordt als bouwsteen. Het T-1
protocol wordt geanalyseerd in de uitgebreide versie van GNY-logica.

Het T-2 protocol, dat we presenteren in hoofdstuk 10, is een nieuw en ef-
ficiënt protocol voor many-to-many kennisauthenticatie. Hiermee is het mo-
gelijk de overlap tussen twee lijsten te bepalen, zonder dat bekend wordt wat
er buiten het overlappende deel zit. Het T-2 protocol is een parallelle compo-
sitie van het T-1 protocol waarbij een aantal optimalisaties is toegepast. De
belangrijkste optimalisatie is het gebruik van prefix trees om de hoeveelheid te
communiceren bits te verkleinen.

Hoofdstuk 11 is de conclusie van dit proefschrift, waarin alle resultaten van
het onderzoek netjes op een rij worden gezet, en aanbevelingen voor vervolg-
onderzoek worden gedaan.

	Cover
	Preamble
	Logo page
	Title Page
	Attribution
	Contents
	Detailed Contents
	List of Figures
	List of Tables

	Acknowledgements

	I Introduction
	1 Introduction
	1.1 The Privacy Debate
	1.2 Guarantees of Availability and Confidentiality
	1.3 Thesis Contents
	1.4 Relation to the Author's Other Publications
	1.5 A Case Study: the Dutch Police
	1.6 Considering Central Storage

	2 Preliminaries
	2.1 Encryption
	2.2 Authorization and Authentication
	2.3 Complexity
	2.4 Probabilistic Algorithms
	2.5 Oblivious Transfer
	2.6 Adversary Models
	2.7 Secure Multiparty Computation
	2.8 Zero-Knowledge Proofs

	II Tools
	3 Cryptographic Hash Functions
	3.1 Normal Hash Functions
	3.2 Special Properties
	3.3 The Random Oracle Model
	3.4 Design Paradigms
	3.5 Common Applications
	3.6 (Non-) Incrementality
	3.7 Conclusion

	4 Authentication Logics
	4.1 The Goals of an Authentication Logic
	4.2 The Taxonomy of Any Authentication Logic
	4.3 Using an Authentication Logic
	4.4 The BAN Logic Debate
	4.5 Conclusion

	5 "Unsoundness" of BAN logic
	5.1 Cryptographic Hash Functions and Justified Beliefs
	5.2 On the Computational Justification of Beliefs
	5.3 The Two Parrots Protocol
	5.4 Used Inference Rules
	5.5 Proof of `Unsoundness' of BAN logic
	5.6 The Semantic Approach
	5.7 Conclusion

	6 Extending GNY Logic
	6.1 Why Authentication Logics Are So Tricky
	6.1.1 Unstated Assumptions: Length-Concealment and Non-Incrementality
	6.1.2 Omitted Inference Rules: The Key to Incompleteness

	6.2 Proofs of Knowledge and Ignorance
	6.2.1 New Inference Rules for Proving Possession
	6.2.2 Proving That Principals Do Not Learn Too Much

	6.3 Conclusion

	III Approaches
	7 Information Designators
	7.1 Information Integration and its Challenges
	7.1.1 Overlapping Ontologies
	7.1.2 Information Propagation

	7.2 A Joint Approach to Privacy, Anonymity and Information Integration
	7.2.1 Information Designators
	7.2.2 Dependency and (Un)linkability
	7.2.3 Operations on Designators

	7.3 An Example: the Datamining Bookshop
	7.3.1 Organizational Setting
	7.3.2 Designators in Action
	7.3.3 Observations About the Use of Subqueries

	7.4 Methods for Restricting Designator Uses
	7.5 Discussion and Related Work
	7.6 Conclusion

	8 Knowledge Authentication
	8.1 Application Areas of Gossip
	8.1.1 Police Investigations
	8.1.2 The Passenger Name Record

	8.2 Comparing Information Without Leaking It and Reference
	8.3 Adversary Models for CIWLI
	8.4 Possible Set Relations
	8.5 Secure Protocols for Computing Set Relations
	8.6 Domain Compression
	8.7 Conclusion

	IV Protocols
	9 1-to-many Protocols (T-1)
	9.1 Prerequisites
	9.2 Protocol Description (Simple, no Encryption)
	9.3 Making the Protocol More Efficient (Elaborate, Encryption)
	9.4 Correctness Proof in GNY Logic
	9.4.1 Knowledge Preconditions
	9.4.2 Claims and GNY Idealization
	9.4.3 The Easy Part of the Proof
	9.4.4 Different Options to Complete the Proof
	9.4.5 Proving principals do not learn too much
	9.4.6 Modeling the beliefs and possessions of an attacker

	9.5 Conclusion

	10 Many-to-many Protocols (T-2)
	10.1 Using Prefix Trees for Efficiency
	10.2 Specification of the T-2 Protocol
	10.2.1 Subprotocol for Determining Intersection
	10.2.2 Subprotocol for Proving Possession

	10.3 Making the Protocol Efficient by Restrictions
	10.4 Determining Communication Complexity
	10.5 Conclusion

	V Conclusion
	11 Conclusion
	11.1 Information Designators
	11.2 Knowledge Authentication
	11.3 Hash Functions and Authentication Logics
	11.4 Relevance to the Privacy Debate

	VI Appendices
	A Remarks to Authentication Logics
	A.1 A Taxonomy of Versions of the BAN Paper
	A.2 A Short Survey of Critisisms on BAN Logic

	B Summary of GNY Logic
	B.1 Formal Language
	B.2 Inference Rules

	C Remarks to Knowledge Authentication
	C.1 The "French Approach"
	C.2 On the Probabilistic Communication Complexity of Set Intersection
	C.3 Fuzzy Private Matching

	D The Secret Prover
	D.1 Starting Up and Connection Control
	D.1.1 Opening a Connection Listener
	D.1.2 Making a Connection

	D.2 Managing Hash Pools
	D.3 Running the Protocol
	D.3.1 Initiating a Protocol
	D.3.2 Responding to a Protocol
	D.3.3 A Side Note on Hash Pools
	D.3.4 Challenging
	D.3.5 Proving
	D.3.6 Verifying
	D.3.7 Faking

	D.4 Closing

	E Notation
	E.1 Symbols
	E.2 Letters

	Postamble
	Bibliography
	Author Index
	SIKS Dissertation Series
	About the Author
	Samenvatting

